
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), 
which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Copyright © 2025 The Author(s). Published by Vilnius Gediminas Technical University

INTEGRATED INDEX ANALYSIS FOR MONITORING URBAN GROWTH BASED ON 
GIS AND REMOTE SENSING DATA IN KARBALA PROVINCE, IRAQ

Nabaa Falih NASER , Israa Fadhil IBRAHEEM, Mufid AlHADITHI

Technical Engineering College, Middle Technical University, Baghdad, Iraq

Article History:  Abstract. Remote sensing techniques and GIS were used in this study to monitor urban growth in Kar-
bala Governorate, Iraq. A compiled database was created from available Multi-temporal Landsat (TM, ETM+ 
and OLI) data from 2000 to 2018. The near infrared (NIR), visible red (R), and short infrared (SWIR) wave-
length areas covered by Landsat bands have been used to generate spectral indices known as the Normal-
ized Difference Built-Up Index (NDBI), Normalized Difference Vegetation Index (NDVI), Normalized Differ-
ence Water Index (NDWI) and Normalized Difference Salinity Index (NDSI). Images of the Landsat 7 and 8 
satellites that were free to download from the USGS website between the years of 2000 and 2018 were the 
data used in this study. The layers were classified and merged to reveal the dynamic changes of land cover 
in the study area. The result shows that the built-up area increased from 264.75 km2 in 2000 to 391.23 km2 
in 2018, indicating an increase over 18 years, but over the same period, the amount of water decreased.
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ultimately results in inefficient resource, so utilization ur-
ban growth management is essential to stopping a city’s 
ongoing expansion (Bhatta et al., 2010).

The trend mentioned focuses on land use and frequent-
ly portrays it incorrectly because it is based on traditional 
land surveys conducted by administration officials (Naser 
et al., 2025). The amount of greenery in urban regions is 
being negatively impacted by the rate of urbanization. Due 
to the increased desire for development in urban areas 
worldwide since the 20th century, the amount of green 
areas has been declining (Kaufmann et al., 2007; Melesse 
et al., 2007; Weng, 2007; Xian & Crane, 2006; Xu, 2008). 
In urban, suburban and agricultural research, determining 
the location, size and distribution of the built-up area is 
very important. Remote sensing and multispectral space 
and series intertemporal satellite images offer trustwor-
thy scientific instruments for calculating the built-up area 
and utilizing. In comparison to traditional ground trothing 
techniques used to map and monitor urban growth the 
remote sensing has a number of advantages where it has 
been used at the regional, local, and temporal stages in 
several studies (Boori et al., 2015; Griffiths et al., 2010). 

1. Introduction

Urban development, especially the expansion of domestic 
and business land use outside of urban centers, has long 
been seen as an indication of the health of the local econ-
omy. However, its advantages are increasingly outweighed 
by its negative effects on the environment, such as the de-
terioration of air and water pollution and the loss of farms 
and woodlands, as well as its negative socioeconomic ef-
fects, such as economic disparities, social fragmentation, 
and infrastructure costs (Ibraheem, 2022; Squires, 2002). 

Urban sprawl is the term for land changes brought on 
by the quick growth of low-density neighborhoods into 
formerly agricultural regions and Exurbs, or metropolitan 
or suburban regions separated from one another by un-
developed territory, have an impact on the socioeconomic 
and natural viability of communities. Urban sprawl is the 
word for unplanned urban development in a city’s sub-
urbs which is on the rise as a result of the population’s 
constant growth (Bugliarello, 2003; Ibraheem & Al-Hadithi, 
2024; Theobald, 2001). It is an unplanned, uneven pattern 
of development that is fueled by various processes and 
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Remote sensing images are helpful for tracking the 
spatial distribution and growth of urban metropolitan ar-
eas because they can provide thorough and timely views 
of land cover (Griffiths et al., 2010; Guindon et al., 2004; 
Ibraheem, 2023; Xu, 2008). The normalized difference 
built-up index (NDBI) allows for the automatic mapping 
of built-up urban areas (Zha et al., 2003). The approach 
benefits from the distinct spectral responses of populated 
regions and other land covers. The successfully construct-
ed regions are mapped using a mathematical modification 
of the NDVI and NDBI images generated were re-encod-
ed from the Landsat Thematic Mapper (TM) images. The 
method developed using the assumption that a positive 
value of NDBI should indicate built-up areas and a posi-
tive value of NDVI should indicate undeveloped areas, re-
encoding the resulting NDBI and NDVI images to gener-
ate binary images (Zha et al., 2003). This study has been 
conducted with the goal of this research is to Combine 
(NDVI) and (NDBI) indices for monitoring Urban Growth 
trend in Karbala Province, Iraq using multitemporal satel-
lite data for the period 2000 to 2018. The research includes 
the following paragraphs: 1 – Introduction, 2 – Materials 
and methods, 3 – Methodology, 4 – Result and discussion, 
5 – Conclusions.

2. Materials and methods

2.1. Study area
Karbala is located to the south of the capital Baghdad 
about 105 km away from it, and the city rises 30 me-
ters above sea level. It is located in an important loca-
tion that connects it to the Saudi Arabia borders through 
Al-Nukhaib, from the north it is connected to the capital, 
Baghdad, from the south it is connected to Najaf, and 
from the southeast side to Hila. The area of Karbala is 
(5031) km2. The city is located at longitude 44∘ 42′ and 
latitude 33∘ 31′ as shown in Figure 1.

2.2. Data used
The data used in this study are images of Landsat 7 and 
8 satellites downloaded from the USGS web page for free 
from 2000 to 2018 Table 1. Images from the Landsat sat-
ellite at 30*30 pixels were used because higher resolu-
tion is not available except for a price, since 2006, high-
resolution images of the region began to be available. In 
future research, we will use satellite images with higher 
resolution.

Table 1. Landsat 7 Enhanced Thematic Mapper plus (ETM+)

Band Wavelength
(micrometers)

Resolution
(meters)

Band 1-Blue 0.45–0.52 30
Band 2-Green 0.52–0.60 30
Band 3-Red 0.63–0.69 30
Band 4-Near Infrared 
(NIR)

0.77–0.90 30

Band 5-ShortWave 
Infrared (SWIR)1

1.55–1.75 30

Band 6-Thermal 10.40–12.50 60*(30)
Band 7-ShortWave 
Infrared (SWIR)2

2.09–2.35 30

Band 8-Panchromatic 0.52–0.90 15

The operational land imager (OLI) and thermal infrared 
(TIRS) are two of the sensors on board these satellites. 
Except for the panchromatic band, the OLI sensor contains 
nine bands with a spatial resolution of 30 m, and the TIR 
sensor has two thermal bands with a 100 m spatial resolu-
tion as shown in Table 2.

Mosaicking and subset process by ERDAS imagine 
2014 and then open it in the GIS program, which is a pro-
cess of compiling satellite images to form a single com-
pound (Figure 2).

Figure 1. Location map of the study area
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3. Methodology

3.1. Pre-processing images
ArcGIS 10.3 has been used to process images. Floats are 
processed both visually and digitally. The entire study area 
was mapped using shape files.

3.2. Analyzing image
NDVI index was calculated using ArcGIS 10.3, and the work 
steps were as shown in Figure 3.

Table 2. The band characteristic for Landsat 8 (source: Acharya & Yang, 2015) 

Band Wavelength
(micrometers)

Resolution
(meters)

Band 1-Ultra Blue (coastal/aerosol) 0.435–0.451 30
Band 2-Blue 0.452–0.512 30
Band 3-Green 0.533–0.590 30
Band 4-Red 0.636–0.673 30
Band 5-Near Infrared (NIR) 0.851–0.0.879 30
Band 6-Shortwave Infrared (SWIR)1 1.566–1.651 30
Band 7-Shortwave Infrared (SWIR)2 2.107–2.294 30
Band 8-Panchromatic 0.503–0.676 15
Band 9-Cirrus 1.363–1.384 30
Band 10-Thermal Infrared (1) 10.60–11.19 30
Band 11-Thermal Infrared (2) 11.50–12.51 30

Figure 2. Image mosaic and subset process
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Geometric correc�on
for images

Mosaic 2018Mosaic 2010Mosaic 2000

Study area
extrac�on 2018

Study area
extrac�on 2010

Study area
extrac�on 2000

NDVI, NDBI,
NDWI, NDSI 2018

NDVI, NDBI,
NDWI, NDSI 2010

NDVI, NDBI, NDWI,
NDSI 2000

Conclusion

Figure 3. Methodology flowchart
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3.3. Spectral indexes
The following steps explain the work steps in precise detail.

3.3.1. Normalized Difference Vegetation Index (NDVI)

NDVI is generated from remote sensing (satellite) data as 
it is closely related to drought conditions. It is based on 
measuring the intensity of green on a plot of land using 
different colors (wavelengths) of visible and near-infrared 
sunlight reflected by plants. The red and near infrared 
bands were used to calculate the NDVI. Estimating the 
NDVI index, which represents the amount of vegetation 
cover, is important and a key factor for estimating the 
general vegetation status in the region.

The near-infrared and red reflectance differences of 
green vegetation were used to compute NDVI. The Equa-
tion (1) was used to determine the NDVI (Archarya & Yang, 
2015):

( )
( )
 

NIR RED
NDVI

NIR RED
−

=
+

. (1)

The value of NDVI ranged from –1 to 1, when it is equal 
to 1 indicates a high density of vegetation and –1 indicates 
a low density of vegetation and zero means that the land 

is barren. All obtained values have been transferred to GIS 
environments and thematic map of NDVI index have been 
created for the period of 2000, 2010 and 2018 as shown 
in Figure 4.

3.3.2. Normalized Difference Built-up Index (NDBI)

It is a digital index that is created using remote sensing 
by examining the electromagnetic energy of near-infrared 
(NIR) and shortwave infrared (SWIR) radiation. It is predict-
ed on the idea that the urban environment is a complex 
ecosystem made up of four primary elements: the soil, the 
water bodies, the green flora, and the surface material. In 
satellite images, NDBI employs wavelengths and is ren-
dered as layers for use in metropolitan areas (Al-Dabbas 
& Manii, 2009). 

( )
)

SWIR NIR
NDBI

SWIR NIR
−

=
+

. (2)

The values of NDBI range from (+1 to –1) a number 
near to +1 denotes the presence of built-up areas, whereas 
a value close to –1 denotes the absence of built-up regions. 
The obtained results values were transferred to GIS environ-
ments for the purpose of creating a thematic map of NDBI 
for the periods 2000, 2010 and 2018 as shown in Figure 5.

Figure 4. NDVI for the year 2000, 2010 and 2018



Geodesy and Cartography, 2025, 51(3), 131–140 135

Figure 5. NDBI for the year 2000, 2010 and 2018

Figure 6. NDWI for the year 2000, 2010 and 2018
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3.3.3. Normalized Difference Water Index (NDWI)

It is a new, advanced technique designed to identify the 
characteristics of open water areas, recognize different 
wetlands, and gauge the volume of surface water. To dis-
tinguish between land and water, this is accomplished uti-
lizing remote sensing data and the NDWI ratio. Normal-
ized Difference Water index (NDWI) was calculated from 
data of the related Landsat bands of TM, ETM and OLI 
within the periods of 2000, 2010 and 2018 respectively, 
using the Equation (3):

Green NIRNDWI
Green NIR

−
=

+
. (3)

If the values of NDWI are smaller than zero or equal to 
zero, this indicates the non-water bodies, but if the values 
are greater than zero, they represent the water bodies. 
The obtained values are transferred into the GIS environ-
ment for the purpose of creating thematic maps for the 
period of 2000, 2010 and 2018 as shown Figure 6. The 
urban surface water bodies were extracted by Normalized 
Difference Water Index (NDWI) from Landsat satellite. The 
images were then classified into two categories consisting 
of water and non-water objects. Furthermore, water areas 
have values greater than zero while vegetation and urban 

areas have negative values. The urban water body was 
extracted by Modified Normalized Difference Water Body 
because this method is more suitable for increasing the 
accuracy of water extraction and effectively reduce as well 
as remove built-up land noise than NDWI. Furthermore, 
MNDWI can be concluded in more detail detecting urban 
water surface than NDWI (Ali et al., 2019).

3.3.4. Normalized Difference Salinity Index (NDSI)

In agricultural settings, salinization–the process of enhanc-
ing soil with soluble salts and producing information about 
salt-impacted soil–is a type of land degradation (Zhao & 
Chen, 2005). 

A typical cause of salinity in irrigated soils is the build-
up of soluble salts brought on by regular irrigation with 
water that has a high or moderate amount of dissolved 
salts which is calculated using the Equation (4):

( )
( )
R NIR

NDSI
R NIR
−

=
+

. (4)

All results were transferred to GIS environment to 
produce the thematic map of NDSI maps detect the 
changes for three periods 2000, 2010 and 2018 as shown 
in Figure 7.

Figure 7. NDSI for the year 2000, 2010 and 2018
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4. Result and discussion

Thematic maps were created for a number of indicators 
using the geographic information systems environment for 
the purpose of monitoring the trend of urban growth in 
Karbala Governorate, Iraq, which have been conducted by 
determining the amount of changes that occurred in these 
indicators and thus determining the area under study’s 
rate of change. The details of the different LULC maps are 
discussed below for the purpose of knowing the changes 
in these indicators in the study area.

4.1. Classification
Both supervised and unsupervised classifications have 
been heavily used in numerous previous studies to pro-
duce classifier maps and final output analysis. Most su-
pervised case classifications have been found to be more 
accurate (Erol & Akdeniz, 1998). Supervised classification 
was used in this study, and 40 samples were taken for each 
class have been used for model training. This classification 
approach stands out for its high accuracy, very low error 
rate, speedy region classification, and area computation 
for every recognized.

Supervised classification was used in this study. To il-
lustrate the changes in land use seen in the maps made for 
the years 2000, 2010, and 2018, the area was divided into 

four main classes based on the satellite images (Figure 8). 
These groups include built-up areas, barren land, vegeta-
tion, and water bodies. The kappa coefficient and overall 
accuracy were utilized to evaluate the classifications’ accu-
racy (Qin & Karnieli, 1999; Schmugge et al., 2002). The per-
centages were, in order, 91.1%, 90%, and 94.2%. Google 
Earth has been used to compare the “ground truth” Class 
type of the 45 reference points from 2000, the 40 reference 
points from 2010, and the 35 reference points from 2018 
with the various land use categories that they were cho-
sen to represent. The calculated overall accuracy (94.2%) is 
greater than the 90% and 91.1% Kappa values. Variations 
among these metrics are anticipated, given that they in-
corporate distinct types of data from the error matrix. The 
overall accuracy only takes into account data along the 
principal diagonal; errors by commission and omission are 
not included. However, a row and column marginal prod-
uct is included to represent the nondiagonal components 
of the error matrix as displayed in Tables 3, 4, and 5. 

overall accuracy = TCS (diagonal)/TS × 100; (5)

kappa coefficient (T) = (TS × TCS) –  
S(Column total × Row total)/TS2 –  
S(Column total – Row total) × 100, (6)

where: TS – Total number of reference pixels; TCS – Total 
number of correctly classified pixels.

Table 3. Accuracy assessment using the selected reference pixels in 2000

Total (User)Built up areaVegetationBarren landWaterClassification 

1000010Water
1000100Barren land
121830Vegetation 
1313000Built up area
451481310Total producer

Table 4. Accuracy assessment using the selected reference pixels in 2010

Total (User)Built up areaVegetationBarren landWaterClassification 

1000010Water
1000100Barren land
1001000Vegetation 
106220Built up area
406121210Total producer

Table 5. Accuracy assessment using the selected reference pixels in 2018

Total (User)Built up areaVegetationBarren landWaterClassification 

1100011Water
90090Barren land
71510Vegetation 
88000Built up area
45951011Total producer
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Figure 8. Supervised classification for the study area for the period 2000, 2010 and 2018

4.2. Land use/land cover change detection
It is the process of extracting information by comparing 
two or more images of an area obtained at different times 
that provide important information about the resource at 
risk. It has been widely used to evaluate changing agricul-
ture, deforestation, urban growth, impact of natural disas-
ters, earthquakes, land use/land cover changes etc. It was 
renowned that the changing rate in spectral indices such 
as NDVI, NDWI, NDBI, and NDSI were negative between 
the years 2000–2010 while the changes in NDBI and NDSI 
between the years 2000–2018 became positive (Table 6).

The changes in NDVI and NDWI were negative in the 
same period as shown in Table 6. The NDVI and NDWI 
results show that built-up areas and water areas were 
high during 2000, decreased during 2010, and decreased 

Table 6. Areas of spectral indices (NDVI, NDWI, NDBI and NDSI) 

Land cover class
2000 2010 2018 Changes (km2)

Area (km2) Area (km2) Area (km2) 2000–2010 2000–2018

NDVI 375.21 349.43 291.37 –25.78 –83.84
NDWI 553.45 213.50 106.07 –339.95 –447.38
NDBI 264.75 236.46 391.23 –28.29 126.48
NDSI 379.26 205.84 419.73 –173.42 40.47

Figure 9. Changes in land cover in Karbala over the period 
of 2000, 2010 and 2018
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significantly in 2018, while both NDBI was low in 2000, 
decreased over 2010, and then increased significantly in 
2018 (Figure 9). It is noted also that the NDSI ratio was 
significantly high in 2000, then decreased in 2010. It then 
greatly increased in 2018, as a result of the research ar-
ea’s high rate of desertification, rising salinity, and high 
temperatures. This area has been severely affected by fac-
tors including lack of water resources, increased soil sa-
linity and loss of vegetation cover. The results showed, 
according to the maps, that the areas with a high salinity 
percentage began to increase from the center, west, and 
south of Karbala governorate areas. As we approached the 
areas east of the city, the population density increased, the 
amount of green space increased as a result of rain and an 
abundance of water cover, and the salinity rate reduced.

5. Conclusions

Multitemporal Remote Sensing Satellite data from the 
previous 18 years were used to track the growth of the 
current research region in the province of Karbala. Land-
sat TM, ETM+, and OLI multitemporal data from 2000 to 
2018. Different spectral indices, such as the Vegetation In-
dex (NDVI), Normalized Difference Built-Up Index (NDBI), 
Normalized Difference Water Index (NDWI), and Standard 
Difference Salinity Index (NDSI), are employed to specify 
and define urban expansion zones and other types of ur-
ban cover. The main conclusions of the present study can 
be summarized as follows:

1. The NDVI map results indicate that the vegetation 
cover decreased between the years 2000 and 2018 
from 375.21 km2 to 291.37 km2 as a result of an 
increase in building area and the conversion of ag-
ricultural land to residential land.

2. As a consequence of climate change, high tem-
peratures, and a lack of precipitation, the study 
area’s water area decreased from 553.45 km2 to 
106.07 km2 as indicated by the NDWI maps.

3. The NDBI map findings revealed an increase in the 
accumulation area from 264.75 km2 to 419.73 km2 
due to the increase in population and the reduction 
in vegetation cover.

4. Decrease in the Normalized Difference Built-up 
Index (NDBI) from 2000 to 2010. Due to the war 
that occurred in 2003, which was accompanied by 
riots, displacement, and the demolition of residential 
homes, which led to a decrease in buildings from 
the years 2000–2010. Regarding the methodology, 
the region was visited to confirm the number of 
points for the purpose of validation that the NDBI 
decreased in 2010, as the region was exposed to 
military operations.

5. The NDSI maps’ findings indicated that the study 
area’s salinity increased between 2000 and 2018 
from 379.26 km2 to 419.73 km2 as a consequence 
of climate change, high temperatures, and a lack of 
precipitation.

6. The current study demonstrates how the integration 
of remote sensing methods with geographic infor-
mation systems produces a system that is easy to 
use and precise when it comes to mapping indica-
tors like NDVI, NDWI, NDBI, and NDSI.

7. The pixel size of 30 meters is useful for preliminary 
studies, feasibility studies, and strategic planning 
studies. If they require more accuracy, data must be 
purchased for a price and more accuracy. Data in the 
first planning stage in the case of feasibility studies 
is sufficient for an accuracy of 30 meters.

8. The use of NDSI contributes to monitoring urban 
growth in remote sensing applications due to the 
region. The area is salty due to the lack of agricul-
ture, construction, and water, and these salts hinder 
agriculture. Also, the area is undesirable due to the 
lack of groundwater, as the cost of investment in 
these areas is high and planners avoid it.
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