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classifying the point cloud into different classes. These are 
mainly categorised in the following two approaches: (1) al-
gorithms based on machine learning and deep learning 
models, and (2) classification algorithms based on mor-
phology and spectrum.

Machine learning and deep learning-based algorithms 
have been explored by various researchers for classifying 
point cloud data, such as, Convolutional Neuron network 
(Lu et al., 2020; Pujol-Miró et al., 2019; Huang et al., 2020; 
Boulch, 2020; Peyghambarzadeh et al., 2020; Wen Chen-
glu et al., 2019; Wen Congcong et al., 2020), Active learn-
ing (Weidner et al., 2020), Random Forest (Weidner et al., 
2019; Park & Guldmann, 2019), Multiview Sematic Learn-
ing network (Yang et al., 2020a), and Atrous XCRF’s algo-
rithm (Arief et al., 2019). With the development of modern 
computing systems and cloud computing, deep learning 
algorithms have become the new standard for processing 
big data, including point clouds.

Morphological and spectral classification algorithms 
are popularly used in point cloud data classification ap-
plications serving the fields of geography and geology. A 

1. Introduction

In recent years, research and development in construct-
ing 3D city models for surface modeling and smart city 
construction orientation has been increased drastically. 
Developing a 3D city model involves integrating several 
different types of data such as the Digital Elevation Model 
(DEM), satellite images, topographic maps, digital images, 
and LIDAR point cloud data. The city’s 3D model is highly 
intuitive, thereby helping managers get a better, more in-
tuitive sense of space and the relationship between geo-
graphical entities in the area. This helps in decision making 
for urban management, especially smart city management 
with the connection of information and communication 
infrastructure.

One of the important inputs in high-resolution 3D 
city models is the LiDAR point cloud. Hence, processing 
and classification of the point cloud is a crucial step for 
constructing the 3D city models. There have been numer-
ous articles that proposes methods and algorithms for 
point cloud classification to identify different objects by 

http://creativecommons.org/licenses/by/4.0/
mailto:quybncres@vnu.edu.vn
mailto:quybncres@vnu.edu.vn


Geodesy and Cartography, 2025, 51(3), 152–164 153

few of these methods are morphological application com-
bined with fuzzy logic (Rastiveis et al., 2020), morphological 
focus network algorithm (Li et  al., 2020), and combining 
shapes-morphology-texture in geomorphological classifica-
tion (Guo et al., 2019). Along with the above studies, there 
are structure-based algorithms (Hamid-Lakzaeian, 2019; 
Xue et al., 2019; Huang et al., 2018) or based on 3-dimen-
sional characterization of data (Yang et al., 2020b; Williams 
& Ilieş, 2018; Stojanovic et al., 2019). Besides, super voxel 
classification algorithms are also applied in studies on point 
cloud classification (Lin et al., 2018; Kang & Yang, 2018; Zhu 
et al., 2017). One of the most widely used algorithms that 
use spectral classifier is hyperspectral (Gerke & Xiao, 2014; 
Brell et al., 2019; Suomalainen et al., 2011) or feedback sig-
nal analysis (Tseng et al., 2015; Lai et al., 2019). 

In particular, surveying and mapping technology has 
made significant progress with many advanced technolo-
gies such as unmanned aerial vehicles (UAV), ground laser 
scanning systems, aviation laser scanning systems, GNSS 
systems, etc. The current data collection measurement 
technology has gradually shifted from traditional measur-
ing devices, single point to point, to devices that collect 
spatial information comprehensively and speedily, such as 
ground laser scanners, mobile laser scanners (mobile map-
ping), and LiDAR scanners on aircraft or UAVs. The stan-
dard data format for these devices is 3D point cloud data 
that carry accurate information about geographic coordi-
nates and much other information such as color, reflection 
intensity, and pulse feedback. With the advent of 3D point 
cloud data, the real world can be entirely presented at the 
true scale. Moreover, the increasing volume of collected 
3D point cloud data has facilitated the provision of di-
verse and complete information sources for classifying and 

constructing objects useful in developing 3D city models. 
The developed 3D city models can be augmented with 
different levels of detail (LoD0 to LoD4), which are the 
attribute information that serves various applications, 
such as, Urban design and management; Spatial planning; 
Identification of environmental issues, and urban environ-
mental management; Disaster prevention and response to 
situations; Application in Tourism & heritage conservation.

Therefore, the point cloud classification will provide an 
input source for building 3D city models. However, with 
the large volume of data, the classification of point cloud 
data is mainly based on the tools of the accompanying 
commercial software of the data collection equipment 
manufacturers. Therefore, the construction of an automatic 
point cloud classification technology process to serve the 
establishment of 3D city models based on researching and 
building algorithms and programs to classify different ob-
jects of data automatically is required. Hence, in this study, 
we have presented a set of algorithms, which helps in the 
automatic classification of point cloud data. These are ex-
plained in detail in the next section.

2. Methods 

This section describes the algorithms used in this study 
for point cloud classification. These algorithms are inte-
grated to automatically classify the point cloud into eight 
different classes and subclasses, excluding water. A broad 
description of feature classes and thresholds used in the 
algorithms are depicted in Figure 1 and are described in 
consecutive sections. 
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Figure 1. The threshold for classifying objects from point cloud data (modified from Bui et al., 2021)
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2.1. Noise filtering algorithm
Noise points are inevitable in LiDAR scanning, primarily, 
due to the presence of low clouds, suspended particles, 
flying birds, and objects suspended on the water surface 
or noise points can also be due to simply the error in 
the scanned data. However, in the modern LiDAR scan-
ning systems, these noise points are often automatically 
filtered out. This is because of the use of an algorithm 
that determines the difference between two scan sessions, 
which filters out the points of the exact location that only 
appear in the first scan but not in the second scan. How-
ever, despite this advancement, the noise points may still 
be present due to a multitude of reasons. Therefore, the 
noise filtering algorithm must still be used to filter out 
these points. In this study, the following two criteria are 
used for noise filtering of the LiDAR point cloud: 1) the 
score is lower than the surrounding points, and 2) the iso-
lated standing points.

The score lower than the surrounding points criteri-
on will look for points with a limited number of points 
and are lower in elevation than most of the surrounding 
points (Figure  2). When removed, these single-standing 
low points will create favorable conditions for accurately 
determining the land surface by the ground algorithm 
proposed in the research. This algorithm will start from 
the lowest points because the lowest points will always 
be on the ground unless these points are error measure-
ment points. 

Figure 2. The low point algorithm

The isolated standing point criterion will help identify 
and filter out clusters of points that are far apart from 
neighboring points. These isolated and suspended points, 
if not interference points, are also the points that are not 
needed.

Further, automatic digitizing algorithms are also used 
for zoning the areas where no data is available, e.g., hy-
drological regions due to zero reflectance of LiDAR rays.

2.2. Ground filter algorithm
In this paper, the progressive TIN densification (PTD) algo-
rithm has been used for enhanced separation of ground 
and non-ground points in a point cloud. The method in-
cludes two implementations of the ascending triangle net-
work distribution algorithm, the first time with the smaller 
parameter values, and at the same time, will limit the dis-
tribution of extra points when the side of the triangle is 
smaller than a given parameter. After the first distribu-
tion reaches this limit, the first search will stop, and the 
found ground points will be used as starting points for 

the second search with other search parameters suitable 
for finding all details on the ground. The starting point for 
the first search is the lowest in a given square. This square 
will be smaller than the size of the largest house in the 
area to avoid misidentifying the starting point located on 
the roof. Due to the selection of the lowest point to return 
to the ground, the error points need to be eliminated by 
the noise filtering algorithm in advance. This approach is 
sometimes also known as the iterative PTD algorithm.

The improved PTD ascending triangular network distri-
bution method proposed in the paper is described in Fig-
ure 3, and the enhanced ground point filtering algorithm 
is shown in Figure 4. 

Figure 3. The ground filter algorithm

In this two step PTD algorithm, the first step works 
on the complete LiDAR point cloud (noise-filtered) and 
includes the following steps:

	■ Step 1: Enter the parameter values. Includes 4 pa-
rameters that need to be determined as follows: 
Maximum house size  – determines the maximum 
size of the search grid; iteration angle – is the maxi-
mum angle between the TIN face and the line linking 
an unclassified point to the nearest vertex of that 
face; iteration distance is the maximum distance 
from an unclassified point to the corresponding TIN 
face, these two values are illustrated in Figure  2; 
edge length value to stop the point distribution 
(side length represents the minimum threshold for 
the largest side length of the triangle).

	■ Step 2: Choose a starting point. This is the lowest 
point in a range larger than the maximum house size 
parameter. Therefore, filtering for points lower than 
the soil surface needs to be done in advance. This 
starting point will be selected to find the first TIN 
triangle, starting a continuous loop that automati-
cally finds other ground points.

	■ Step 3: Point distribution loop. The loop will continu-
ously find ground points that satisfy the 3 parameter 
values of iteration angle, iteration distance, and edge 
length from the original point layer. The loop will 
end when no more satisfying points can be found. 
In the first round of PTD filtering, the edge length 
parameter will be used to stop the point distribution 
to help find the most reliable ground points with a 
large edge length value.

The result of the first filter round will be a layer of 
ground points with a density equal to the large edge 
length value to stop the point distribution. This layer of 
ground points will be used as the starting point for the 
second round of PTD filtering including the following 
steps:
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	■ Step 1: Enter the parameter values. Includes 2 pa-
rameters that need to be determined as follows: the 
iteration angle and the iteration distance have a dif-
ferent value from the value of the first search loop.

	■ Step 2: Choose a starting point. Use all the ground 
points generated from the first filter as the starting 
point.

	■ Step 3: Point distribution loop. The loop will con-
tinuously find the ground points that satisfy the 2 
parameter values of iteration angle, the iteration dis-
tance is set. The loop will end when no more satisfy-
ing points can be found.

The result of this second filtering process will help find 
all ground points. This ground classification approach is 
implemented using the built-in ground classification al-
gorithm.

2.3. Algorithm for classifying the points of 
asphalt road

Table 1 lists the LiDAR reflectance of various features as 
provided by Riegl, the LiDAR instruments manufacturer.

From Table  1, it is observed that the intensity value 
of the LiDAR point cloud can be used to separate various 

objects, especially when there is a large difference be-
tween reflectances. 

The asphalt classification algorithm proposed in this 
article uses the intensity value of the point cloud to 
separate the asphalt layer from the ground layer. It can 
be seen from Table 1 that the asphalt layer has a very 
low reflectivity, which is different from the rest of the 
ground objects.

The intensity value of the point cloud from the City-
Mapper is stored in 16-bit format, thus the value from 
weak to strong varies from 0–65535. After multiple test 
processings, an intensity threshold of 6000 is selected 
that separates asphalt from other ground points with the 
highest quality. Due to the light absorbing characteristic, 
asphalt has the lowest intensity value as compared with 
other materials in the study areas. There are some excep-
tions, however, those abnormal points mostly stand sepa-
rately and in a small number. Therefore, those points are 
filtered back to the ground layer with the isolated standing 
point algorithm.

The asphalt classification algorithm is implemented on 
the ground layer (obtained after enhanced PTD classifica-
tion), which results in two layers: asphalt road point clouds 
and remaining ground point clouds.

Table 1. Response intensity of different surface types

Material Reflectance (%) Material Reflectance (%)

White paper
Flat wood material
Snow
Sponges
White clay
Granit and clay 
Newspaper
Tissue

Up to 100
94

80–90
88
85

Up to 75
69
60

Carbonate sand (dry)
Beach sand
Carbonate sand (wet)
Conifer 
Fine concrete
Asphalt and pebble stones
Lava
Black rubber

57
50
41
30
24
17
8
2

Figure 4. The enhanced ground point filtering algorithm
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2.4. Vegetation classification algorithm
The normalized difference vegetation index (NDVI) is used 
for classifying the vegetation in the point cloud. NDVI 
values (from multi-spectral images) for each point in the 
point cloud are combined with the corresponding eleva-
tion values to classify the vegetation layer. NDVI value 
helps in avoiding misclassification of buildings and other 
non-vegetation points into the vegetation class. The alti-
tude classification algorithm used in the paper is shown 
in Figure 5.
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Figure 5. Algorithm for classification by altitude

A TIN based bare earth model is generated using the 
ground points. Then the elevation of all the non-ground 
points is measured with respect to this bare earth model. 
A combination of the NDVI and elevation of the points 
are used to categorize the point cloud into three classes: 

	■ Low vegetation (grasses, vegetables, crops): eleva-
tion 0–0.3 m and NDVI > 0.3; 

	■ Medium vegetation (ornamental plants, shrubs, etc): 
elevation 0.3–0.5 m and NDVI > 0.3; and

	■ High vegetation (trees and urban greenery): eleva-
tion >0.5 m and NDVI > 0.3.

NDVI value of 0.3 was selected because it provided 
the highest accuracy after several tests runs in three study 
areas.

2.5. Roof filtering algorithm
The roof filtering algorithm uses the plane-expansion clus-
tering method with other algorithms to classify the house 
point classes, i.e., roofs and walls. The flowchart of this 
algorithm is shown in Figure 6.

The point cloud obtained after separating ground and 
vegetation points is used as input in this algorithm. These 
remaining feature points that are higher than the ground 
level, are not vegetation, and have the shape of flat sur-
faces are likely to belong to the structures identified built 
by humans. Therefore, the primary step of this algorithm is 
to cluster the planes on this remaining point cloud.

Further, the following two parameters are attached to 
the plane clusters to assure that the clustered plane points 
are roof objects:

	■ Minimum size of the roof: helps distinguish the 
house roof from objects such as vehicles, trash cans, 
mailboxes, etc., because these also have a flat sur-
face but are smaller in size.

	■ Surface thickness: determines the thickness of clus-
tered plane points to accept it as a roof. This pa-
rameter is based on the noise of the point cloud, 
the convexity, and the patterns of the roof surfaces.

Another important parameter in this algorithm is the 
slope angle of clusters. The clusters with a slope angle 
from 88°–90° will belong to the objects such as house 

walls or billboards. Therefore, plane point clusters having a 
slope less than 88° are selected to identify the house roof 
point layer. Within and near this roof layer that contains 
flat surfaces, other roof details or auxiliary parts such as 
chimneys and musty (stair covers on the roofs) are identi-
fied from the point cloud using a distance threshold. Sub-
sequently, the point cloud under the roof layer is classified 
as the wall layer. The roof, auxiliary parts, and the wall 
point clouds, together form the house point cloud layer. 
These layers are an important input to automatically digi-
tize and build 3D models of the house blocks.

After all the aforementioned point cloud classifications, 
the remaining point cloud data is treated as other feature 
classes.
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Figure 6. Roof filter algorithm

3. Experiment and analysis

3.1. Experiment location and data
The LiDAR point cloud classification algorithms discussed 
above are implemented in three study areas based on 
three different housing characteristics in Hon Gai, Ha 
Long city, Quang Ninh province (Figure 7). The first area 
has an area of 27.6 hectares in Hong Hai ward, which is 
a newly built urban area and includes several villas and 
townhouses, schools, and sports fields. The second area 
is an ancient urban area in Bach Dang ward having an 
area of 27.3 hectares. This area has a very dense density 
of houses, mainly houses that were built a long time ago, 
and at the same time has an additional area with plants 
providing food. The third area is the latest construction 
area with many high-rise buildings along with the newly 
opened coastal road, including parks, squares, and some 
administrative buildings of the city. This area belongs to 
the Hong Gai ward, with an area of 29.5 hectares.

3.2. Accuracy evaluation
The article uses the accuracy assessment method used by 
Cai et  al. (2018) to evaluate their process of automatic 
digitization of objects from remote sensing images. This 
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accuracy assessment method includes five components: 
1) object match assessment; 2) accurate range assessment; 
3) quantity-based assessment; 4) similarity-based assess-
ment and 5) distance-based assessment. However, for the 
present study, only two of the above five and an additional 
method need to be used: 1) to evaluate the object match, 
2) to evaluate the accuracy range, and 3) to evaluate the 
numerical accuracy.

Object match assessment is done by comparing the 
area of the digitized object with respect to the reference 
object. The overall fit index (Oij) value for the comparison 
of the two objects is given by 
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where AR, j is the total area value of the reference objects, 
AC,i is the value of the total area of the evaluated/digitized 
object, and AC,i ∩ AR, j is the interference area. Oij helps 
show the evaluated object’s match compared to the ref-
erenced object.

The second evaluation method is the area-based as-
sessment method. This method helps to evaluate the level 

of accuracy and completeness based on the two equations 
below:
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;C

DC

A
A

	 (2)

PAR = 
  

,C

RC

A
A

	 (3)

where PAC accuracy is the ratio of the area of the automati-
cally classified area (AC) to the total area of the automati-
cally classified area (ADC). The PAC accuracy will range from 
0 to 1; if all objects are classified correctly, then PAC = 1. 
PAR is the completion level and is given as the ratio of AC 
to the total area of the reference area (ARC). The PAR com-
pleteness will range from 0 to 1. If all the auto-classified 
objects exactly match the reference area, then PAR = 1.

The third evaluation method is the quantitative meth-
od. This method helps to evaluate the level of accuracy 
and completeness based on the following two equations:

PNC = 
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N
N
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PNR = 
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Figure 7. Assessment areas in Ha Long city: A1 – Hong Hai; A2 – Bach Dang; A3 – Hong Gai
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where PNC accuracy is the ratio of the number of objects 
automatically classified correctly (NC) to the total number 
of objects classified (NDC). The PNC accuracy will range 
from 0 to 1. If all objects are automatically classified cor-
rectly, then PNC = 1. PNR completeness is the ratio of (NC) 
to the total number of objects in the reference data (NRC). 
The PNR completeness will range from 0 to 1. If all the 
auto-classified objects exactly match the reference objects, 
then PNR = 1.

4. Results and discussion

4.1. Evaluation of the accuracy of the ground 
point classification algorithm
Area-based accuracy assessment is used to evaluate the 
accuracy of the used automatic ground filtering algorithm. 
The enhanced ground classification algorithm is imple-
mented on the built-in software, and the results are also 
compared with the traditional PTD method implemented 
on TerraSolid software.

The classified ground points are checked manually using 
different views and ways of displaying them in TerraSolid 
prior to calculating the statistics in the area. For the three 
areas together, the total number of ground points identi-
fied with the traditional PTD algorithm is 675 000 points, 
and with the improved PTD 1244000 points.

In Figures 8a, and 8b, the orange points are the ground 
points that have been correctly classified, and the blue 
points are the points that are the ground but have not 
been classified by the algorithm.

The total reference area of study area A1 is 
ARC = 179 690 m2. For the traditional PTD method, after 
manual testing and statistics: the area that is automati-
cally classified is ADC  =  176  044  m2 and the automati-
cally correctly classified area is AC = 161 380 m2. For the 
improved PTD method, the total automatically classified 
area is ADC = 178 529 m2 and the correctly classified area 
is AC = 174 030 m2. Finding the similar values for study 
areas A2 and A3, PAC, and PAR for all three study areas are 
calculated and shown in Table 2.

Table 2. Results of comparing the accuracy and 
completeness of the proposed ground filter algorithm with 
that of the classical PTD algorithm

Areas
PAC PAR

Classical 
PTD

Enchanced 
PTD

Classical 
PTD

Enchanced 
PTD

A1 0.9167 0.9748 0.8981 0.9685
A2 0.8832 0.9515 0.8656 0.9493
A3 0.9017 0.9668 0.9149 0.9763

Figure 8. Inaccurate ground filter area statistics: a) a part of the image was derived from data of the A1 – Hong Hai area; b) a 
part of the image was derived from data of the A2 – Bach Dang area

a)

b)
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From the experimental results, it can be seen that the 
enhanced PTD ground classification algorithm has higher 
accuracy than the traditional PTD ground classification al-
gorithm, which helps to reduce manual effort while saving 
time and human resources. 

4.2. Evaluation of point cloud automatic 
classification accuracy
The process of automatic point cloud classification is per-
formed according to the proposed algorithm based on the 
designed software of the article. The accuracy assessment 
for all classified classes is performed by a manual inspec-
tion using multidimensional views of point cloud data in 
TerraSolid. The ortho images are used as the reference 
data.

4.2.1. Assessment of asphalt automatic classification 
accuracy

In Figure 9, areas with red contours mark the size of the 
entire area classified as asphalt. The gray point layer de-
picts the correctly classified asphalt point while yellow 
points are the incorrectly graded asphalt point. The blue 
outlines mark the actual asphalt area. The automatic road 
classification algorithm is assessed using PAR and PAC. 

The total reference area of asphalt road in study area 
A1 is ARC = 45760 m2, the total automatically classified as-
phalt road area is ADC = 49119 m2 and the correctly classi-
fied asphalt road area is AC = 45403 m2. Finding the similar 
values for study areas A2 and A3, PAC, and PAR for all the 
three study areas are calculated and shown in Table 3.

Repeat the assessment with sites A2 and A3, the result 
is shown in the following table:

Table 3. Results of the accuracy of an asphalt classification 
algorithm for 3 study areas

Asphalt PAC PAR

A1 0.9243 0.9922
A2 0.8815 0.9139
A3 0.8273  0.8592

The accuracy and completion achieved from the as-
phalt road classification algorithm varies up to 10% in the 

three study areas. The variation in the results is because 
some yard tiles also have low reflectivity, similar to the re-
flective level of asphalt. Additionally, the range of intensity 
values of asphalt in an area also has a significant variation. 
Therefore, the level of completion can be increased by in-
creasing the search parameters, however, accuracy may 
get reduced due to the false detection of other objects. 
Only A1 has considerable uniformity in the intensity values 
of asphalt, hence, the classification algorithm provides the 
best results in this area.

4.2.2. Evaluate the accuracy of automatic 
classification of plant objects

In Figure 10, the green points are the tree points that have 
been automatically correctly classified points. Purple points 
are those, which are automatically classified but give false 
results. The pink points are unclassified plant points. The 
automatic plant classification algorithm is assessed using 
PNC and PNR. 

The total reference points belonging to the plant ob-
jects in study area A1 is NRC = 2013402, the total automat-
ically classified plant points is NDC = 2020698 and correctly 
classified plant points NC = 2001080. Finding the similar 
values for study areas A2 and A3, PNC and PNR for all the 
three study areas are calculated and shown in Table 4.

Table 4. Results of the accuracy of plant classification 
algorithms for 3 study areas

Plant PNC PNR

A1 0.9903 0.9939

A2 0.9718 0.9691

A3 0.9806 0.9869

From Table 4, it is observed that the accuracy and com-
pletion of the plant classification algorithm are relatively 
high and consistent in all the three study areas. The aver-
age accuracy of the algorithm is 98.09%, and the average 
completion at the level of 98.33% is achieved. The reason 
for these high values can be due to one, more, or all of 
the following reasons: (1) combining elevation with NDVI 
values, (2) the plant objects in the areas are quite uniform 
in species, and (3) there is less temporal variation in data 

Figure 9. Statistics of classification results of asphalt roads
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collection of the three study areas, hence, almost all plants 
have green foliage that further enhanced the use of NDVI. 
The misclassified plant points mainly belong to the roof-
top and hanging (from the wall) plants.

4.2.3. Assess the accuracy of automatic home 
classification

In Figure 11, the red points are the roof points that have 
been automatically correctly classified points. Blue points 
are those, which are automatically classified but give false 
results. The automatic plant classification algorithm is as-
sessed using PAC and PAR. 

The total reference area of roofs in study area A1 is 
ARC = 102822 m2, the total automatically classified roof 
area is ADC = 103526 m2 and the correctly classified roof 
area is AC = 101970 m2. Finding the similar values for study 
areas A2 and A3, PAC, and PAR for all the three study areas 
are calculated and shown in Table 5.

Table 5. Results of the accuracy of roof classification 
algorithm for 3 study areas

Building Accuracy Completion level

A1 0.9850 0.9917
A2 0.9518 0.9676
A3 0.9691 0.9557

From Table 5, it is observed that the accuracy and com-
pletion of the roof classification algorithm is also high and 
consistent in all the three study areas. The average accu-
racy of the algorithm is 96.86%, and the average comple-
tion at the level of 97.17% is achieved depicting that most 
of the roof area is correctly classified. Study area A1 has 
the highest accuracy and completeness due to similarity 
in the house architecture in this area. Study area A2 has 
the lowest accuracy because this area has a high house 

density and moreover, the houses have distinctive features 
as these were built decades ago. There are a few areas 
that are misclassified as roof points. These are primarily 
sunshades or bus shelters, which are sometimes similar to 
house roofs. Also, due to the low height and large width, 
unclassified roofs are mistakenly classified as ground ob-
jects, but these false cases account for a small percentage.

4.2.4. Evaluate the accuracy of the house automation 
algorithm

The regional house digitization file is used as the collation 
data to evaluate the accuracy of the automatic house digi-
tization algorithm (Figure 12) using Oij object-fit, PAC area 
accuracy, and PAR area completeness, given in Section 3.

The accuracy assessment results of the home digiti-
zation algorithm for the three study areas are shown in 
Table 6.

Table 6. Matching, accuracy results of home digitization 
algorithm for three evaluation areas

House 
digitization

Matching 
degree Accuracy Completion 

level

A1 0.9285 0.9450 0.9371
A2 0.9217 0.9288 0.9362
A3 0.9118 0.9331 0.9217

The above results show that the accuracy of the house 
digitization algorithm is smaller than the accuracy of the 
house classification algorithm. This is understandable be-
cause the houses are automatically digitized on the clas-
sified roof layer data. Therefore, the house classification 
algorithm’s accuracy directly affects the home digitization 
algorithm’s accuracy.

From Table 6, it can be seen that the accuracy of the 
house automation algorithm proposed in the article is 
relatively high, with the object matching values and the 

Figure 10. High plant classification algorithm results
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Figure 11. Roof data layer classification results: a) classification results of roof point class; b) statistics of classification results of 
roof point class

a)

b)

Figure 12. Reference data (left) and home automation results (right) of the assessment area

accuracy of all three sites being greater than 0.9; the 
level of the completion of the three sites is as follows: 
0.9371–0.9362–0.9217, showing that the algorithm has 
digitized most of the houses. The houses that are miss-
ing or incorrectly digitized are mainly due to the complex 
and/or heterogeneous roof structures, and roofs covered 

with vegetation. Besides, with the match and completion 
results above 0.9, it shows the high automation ability of 
the algorithm, helping to reduce manual effort. Consider-
ing each area separately, it can be seen that A1 has a uni-
form square house, so it has better automatic digitization 
results than A2 and A3.
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4.3. Results of building 3D city models in Hon 
Gai, Ha Long, Quang Ninh province
With the 3D terrain background, an image map, and con-
tent objects processed and classified according to the pro-
posed process, including vegetation, roads, hydrological 
systems, buildings, and other geographical features, the 
3D city model of Hon Gai area in Ha Long city, Quang 
Ninh province, have been constructed (Figure 13). 

The developed 3D city model can reach the Level of 
Detail 2 (LoD2) and hence, can be used for many different 
purposes such as Security  – Defense; Urban design and 
management, Spatial planning, Identification of environ-
mental issues and urban environmental management, Di-
saster management and mitigation, Application in Tourism 
& heritage conservation, etc.

5. Conclusions

The article has built a set of automatic point cloud classi-
fication algorithms based on researching and synthesizing 
existing point cloud classification algorithms and studying 
the characteristics of LiDAR point cloud data. Newly re-

leased into eight different subclasses, with high accuracy. 
With the proposed algorithm, we can completely build 
automatic point cloud classification software, which will 
be a tool to help improve efficiency and production effi-
ciency for point cloud data classification. While in Vietnam, 
studies on point cloud classification algorithms are limited, 
mainly focusing on ground point classification, and most 
manufacturing units use available algorithms of commer-
cial software.

The experimental implementation of the point cloud 
classification algorithm and the automatic process of 
building 3D city models at Hon Gai experimental area, 
Ha Long city, has demonstrated the ability to deploy real 
data by the set of algorithms and the automatic process 
of building 3D city models. The evaluation results in three 
sites of the experimental area show that the set of algo-
rithms brings automation and high accuracy, and the 3D 
city model is built automatically, which saves costs and 
production time. This indicates that the set of point cloud 
classification algorithms, the threshold of classification cri-
teria, and the automatic process of building 3D city mod-
els proposed in the article are highly automated, help-
ing to improve the efficiency of data production of the 

Figure 13. 3D city model of Hon Gai, Ha Long, Quang Ninh province: a) a part of the 3D model of A1 – Hong Hai area; b) a 
part of the 3D model of A2 – Bach Dang area; c) a part of the 3D model of area A3 – Hong Gai area  

a)

         b)                                                                            c)
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existing data at enterprises, contributing to increasing the 
speed and reducing the cost of data production, creating 
favorable conditions for developing more modern and ad-
vanced applications.
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