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Abstract. This article aims to develop an improved algorithm for classification of point cloud data. The pri-
mary component of this algorithm is determination of the classification thresholds for different geographical
objects, which helps in the automatic classification of the LiDAR point cloud data. The algorithm was tested

to classify the point cloud of three different areas of Ha Long city in Quang Ninh province. The results from
the three areas show that for the ground points our algorithm is on average 6.4% more accurate than the
traditional progressive TIN densification (PTD) algorithm. Further, with the proposed point cloud classifica-
tion algorithms the average accuracy for asphalt roads is 87.77%, 98.09% for vegetation, and 96.86% for roof
objects. The classified roof objects were further processed for house digitization, which provided an average
accuracy of 92.07%. The whole dataset was used to develop 3D city models of the three areas (A1, A2 and
A3 in Figure 7) in Hon Gai ward, Ha Long city with Level of Detail (LoD) 2.
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1. Introduction

In recent years, research and development in construct-
ing 3D city models for surface modeling and smart city
construction orientation has been increased drastically.
Developing a 3D city model involves integrating several
different types of data such as the Digital Elevation Model
(DEM), satellite images, topographic maps, digital images,
and LIDAR point cloud data. The city's 3D model is highly
intuitive, thereby helping managers get a better, more in-
tuitive sense of space and the relationship between geo-
graphical entities in the area. This helps in decision making
for urban management, especially smart city management
with the connection of information and communication
infrastructure.

One of the important inputs in high-resolution 3D
city models is the LiDAR point cloud. Hence, processing
and classification of the point cloud is a crucial step for
constructing the 3D city models. There have been numer-
ous articles that proposes methods and algorithms for
point cloud classification to identify different objects by

classifying the point cloud into different classes. These are
mainly categorised in the following two approaches: (1) al-
gorithms based on machine learning and deep learning
models, and (2) classification algorithms based on mor-
phology and spectrum.

Machine learning and deep learning-based algorithms
have been explored by various researchers for classifying
point cloud data, such as, Convolutional Neuron network
(Lu et al., 2020; Pujol-Mir6 et al., 2019; Huang et al., 2020;
Boulch, 2020; Peyghambarzadeh et al., 2020; Wen Chen-
glu et al., 2019; Wen Congcong et al., 2020), Active learn-
ing (Weidner et al., 2020), Random Forest (Weidner et al.,,
2019; Park & Guldmann, 2019), Multiview Sematic Learn-
ing network (Yang et al., 2020a), and Atrous XCRF's algo-
rithm (Arief et al., 2019). With the development of modern
computing systems and cloud computing, deep learning
algorithms have become the new standard for processing
big data, including point clouds.

Morphological and spectral classification algorithms
are popularly used in point cloud data classification ap-
plications serving the fields of geography and geology. A
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few of these methods are morphological application com-
bined with fuzzy logic (Rastiveis et al., 2020), morphological
focus network algorithm (Li et al., 2020), and combining
shapes-morphology-texture in geomorphological classifica-
tion (Guo et al., 2019). Along with the above studies, there
are structure-based algorithms (Hamid-Lakzaeian, 2019;
Xue et al,, 2019; Huang et al., 2018) or based on 3-dimen-
sional characterization of data (Yang et al., 2020b; Williams
& llies, 2018; Stojanovic et al., 2019). Besides, super voxel
classification algorithms are also applied in studies on point
cloud classification (Lin et al., 2018; Kang & Yang, 2018; Zhu
et al., 2017). One of the most widely used algorithms that
use spectral classifier is hyperspectral (Gerke & Xiao, 2014;
Brell et al., 2019; Suomalainen et al.,, 2011) or feedback sig-
nal analysis (Tseng et al,, 2015; Lai et al., 2019).

In particular, surveying and mapping technology has
made significant progress with many advanced technolo-
gies such as unmanned aerial vehicles (UAV), ground laser
scanning systems, aviation laser scanning systems, GNSS
systems, etc. The current data collection measurement
technology has gradually shifted from traditional measur-
ing devices, single point to point, to devices that collect
spatial information comprehensively and speedily, such as
ground laser scanners, mobile laser scanners (mobile map-
ping), and LiDAR scanners on aircraft or UAVs. The stan-
dard data format for these devices is 3D point cloud data
that carry accurate information about geographic coordi-
nates and much other information such as color, reflection
intensity, and pulse feedback. With the advent of 3D point
cloud data, the real world can be entirely presented at the
true scale. Moreover, the increasing volume of collected
3D point cloud data has facilitated the provision of di-
verse and complete information sources for classifying and
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constructing objects useful in developing 3D city models.
The developed 3D city models can be augmented with
different levels of detail (LoDO to LoD4), which are the
attribute information that serves various applications,
such as, Urban design and management; Spatial planning;
|dentification of environmental issues, and urban environ-
mental management; Disaster prevention and response to
situations; Application in Tourism & heritage conservation.

Therefore, the point cloud classification will provide an
input source for building 3D city models. However, with
the large volume of data, the classification of point cloud
data is mainly based on the tools of the accompanying
commercial software of the data collection equipment
manufacturers. Therefore, the construction of an automatic
point cloud classification technology process to serve the
establishment of 3D city models based on researching and
building algorithms and programs to classify different ob-
jects of data automatically is required. Hence, in this study,
we have presented a set of algorithms, which helps in the
automatic classification of point cloud data. These are ex-
plained in detail in the next section.

2. Methods

This section describes the algorithms used in this study
for point cloud classification. These algorithms are inte-
grated to automatically classify the point cloud into eight
different classes and subclasses, excluding water. A broad
description of feature classes and thresholds used in the
algorithms are depicted in Figure 1 and are described in
consecutive sections.
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Figure 1. The threshold for classifying objects from point cloud data (modified from Bui et al., 2021)



2.1. Noise filtering algorithm

Noise points are inevitable in LiDAR scanning, primarily,
due to the presence of low clouds, suspended particles,
flying birds, and objects suspended on the water surface
or noise points can also be due to simply the error in
the scanned data. However, in the modern LiDAR scan-
ning systems, these noise points are often automatically
filtered out. This is because of the use of an algorithm
that determines the difference between two scan sessions,
which filters out the points of the exact location that only
appear in the first scan but not in the second scan. How-
ever, despite this advancement, the noise points may still
be present due to a multitude of reasons. Therefore, the
noise filtering algorithm must still be used to filter out
these points. In this study, the following two criteria are
used for noise filtering of the LiDAR point cloud: 1) the
score is lower than the surrounding points, and 2) the iso-
lated standing points.

The score lower than the surrounding points criteri-
on will look for points with a limited number of points
and are lower in elevation than most of the surrounding
points (Figure 2). When removed, these single-standing
low points will create favorable conditions for accurately
determining the land surface by the ground algorithm
proposed in the research. This algorithm will start from
the lowest points because the lowest points will always
be on the ground unless these points are error measure-
ment points.
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Figure 2. The low point algorithm

The isolated standing point criterion will help identify
and filter out clusters of points that are far apart from
neighboring points. These isolated and suspended points,
if not interference points, are also the points that are not
needed.

Further, automatic digitizing algorithms are also used
for zoning the areas where no data is available, e.g., hy-
drological regions due to zero reflectance of LiDAR rays.

2.2. Ground filter algorithm

In this paper, the progressive TIN densification (PTD) algo-
rithm has been used for enhanced separation of ground
and non-ground points in a point cloud. The method in-
cludes two implementations of the ascending triangle net-
work distribution algorithm, the first time with the smaller
parameter values, and at the same time, will limit the dis-
tribution of extra points when the side of the triangle is
smaller than a given parameter. After the first distribu-
tion reaches this limit, the first search will stop, and the
found ground points will be used as starting points for
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the second search with other search parameters suitable
for finding all details on the ground. The starting point for
the first search is the lowest in a given square. This square
will be smaller than the size of the largest house in the
area to avoid misidentifying the starting point located on
the roof. Due to the selection of the lowest point to return
to the ground, the error points need to be eliminated by
the noise filtering algorithm in advance. This approach is
sometimes also known as the iterative PTD algorithm.

The improved PTD ascending triangular network distri-
bution method proposed in the paper is described in Fig-
ure 3, and the enhanced ground point filtering algorithm
is shown in Figure 4.

X Iteration distance
e Iteration angle
° %] (@]

Figure 3. The ground filter algorithm

In this two step PTD algorithm, the first step works
on the complete LiDAR point cloud (noise-filtered) and
includes the following steps:

» Step 1: Enter the parameter values. Includes 4 pa-
rameters that need to be determined as follows:
Maximum house size — determines the maximum
size of the search grid; iteration angle — is the maxi-
mum angle between the TIN face and the line linking
an unclassified point to the nearest vertex of that
face; iteration distance is the maximum distance
from an unclassified point to the corresponding TIN
face, these two values are illustrated in Figure 2;
edge length value to stop the point distribution
(side length represents the minimum threshold for
the largest side length of the triangle).

» Step 2: Choose a starting point. This is the lowest

point in a range larger than the maximum house size
parameter. Therefore, filtering for points lower than
the soil surface needs to be done in advance. This
starting point will be selected to find the first TIN
triangle, starting a continuous loop that automati-
cally finds other ground points.
Step 3: Point distribution loop. The loop will continu-
ously find ground points that satisfy the 3 parameter
values of iteration angle, iteration distance, and edge
length from the original point layer. The loop will
end when no more satisfying points can be found.
In the first round of PTD filtering, the edge length
parameter will be used to stop the point distribution
to help find the most reliable ground points with a
large edge length value.

The result of the first filter round will be a layer of
ground points with a density equal to the large edge
length value to stop the point distribution. This layer of
ground points will be used as the starting point for the
second round of PTD filtering including the following
steps:
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= Step 1: Enter the parameter values. Includes 2 pa-
rameters that need to be determined as follows: the
iteration angle and the iteration distance have a dif-
ferent value from the value of the first search loop.

= Step 2: Choose a starting point. Use all the ground
points generated from the first filter as the starting
point.

= Step 3: Point distribution loop. The loop will con-

tinuously find the ground points that satisfy the 2
parameter values of iteration angle, the iteration dis-
tance is set. The loop will end when no more satisfy-
ing points can be found.

The result of this second filtering process will help find
all ground points. This ground classification approach is
implemented using the built-in ground classification al-
gorithm.

2.3. Algorithm for classifying the points of
asphalt road

Table 1 lists the LiDAR reflectance of various features as

provided by Riegl, the LiDAR instruments manufacturer.
From Table 1, it is observed that the intensity value

of the LiDAR point cloud can be used to separate various

objects, especially when there is a large difference be-
tween reflectances.

The asphalt classification algorithm proposed in this
article uses the intensity value of the point cloud to
separate the asphalt layer from the ground layer. It can
be seen from Table 1 that the asphalt layer has a very
low reflectivity, which is different from the rest of the
ground objects.

The intensity value of the point cloud from the City-
Mapper is stored in 16-bit format, thus the value from
weak to strong varies from 0-65535. After multiple test
processings, an intensity threshold of 6000 is selected
that separates asphalt from other ground points with the
highest quality. Due to the light absorbing characteristic,
asphalt has the lowest intensity value as compared with
other materials in the study areas. There are some excep-
tions, however, those abnormal points mostly stand sepa-
rately and in a small number. Therefore, those points are
filtered back to the ground layer with the isolated standing
point algorithm.

The asphalt classification algorithm is implemented on
the ground layer (obtained after enhanced PTD classifica-
tion), which results in two layers: asphalt road point clouds
and remaining ground point clouds.
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Figure 4. The enhanced ground point filtering algorithm

Table 1. Response intensity of different surface types

Material Reflectance (%) Material Reflectance (%)
White paper Up to 100 Carbonate sand (dry) 57
Flat wood material 94 Beach sand 50
Snow 80-90 Carbonate sand (wet) 41
Sponges 88 Conifer 30
White clay 85 Fine concrete 24
Granit and clay Up to 75 Asphalt and pebble stones 17
Newspaper 69 Lava 8
Tissue 60 Black rubber 2




2.4. Vegetation classification algorithm

The normalized difference vegetation index (NDVI) is used
for classifying the vegetation in the point cloud. NDVI
values (from multi-spectral images) for each point in the
point cloud are combined with the corresponding eleva-
tion values to classify the vegetation layer. NDVI value
helps in avoiding misclassification of buildings and other
non-vegetation points into the vegetation class. The alti-
tude classification algorithm used in the paper is shown
in Figure 5.

Create a temporary Calculate the distance
TIN surface for the | —{ from each point to the —»,
ground point layer ground surface

Classify classes based
on distance to the
ground

Figure 5. Algorithm for classification by altitude

A TIN based bare earth model is generated using the
ground points. Then the elevation of all the non-ground
points is measured with respect to this bare earth model.
A combination of the NDVI and elevation of the points
are used to categorize the point cloud into three classes:

= Low vegetation (grasses, vegetables, crops): eleva-

tion 0-0.3 m and NDVI > 0.3;

= Medium vegetation (ornamental plants, shrubs, etc):

elevation 0.3-0.5 m and NDVI > 0.3; and

= High vegetation (trees and urban greenery): eleva-

tion >0.5 m and NDVI > 0.3.

NDVI value of 0.3 was selected because it provided
the highest accuracy after several tests runs in three study
areas.

2.5. Roof filtering algorithm

The roof filtering algorithm uses the plane-expansion clus-
tering method with other algorithms to classify the house
point classes, i.e., roofs and walls. The flowchart of this
algorithm is shown in Figure 6.

The point cloud obtained after separating ground and
vegetation points is used as input in this algorithm. These
remaining feature points that are higher than the ground
level, are not vegetation, and have the shape of flat sur-
faces are likely to belong to the structures identified built
by humans. Therefore, the primary step of this algorithm is
to cluster the planes on this remaining point cloud.

Further, the following two parameters are attached to
the plane clusters to assure that the clustered plane points
are roof objects:

= Minimum size of the roof: helps distinguish the

house roof from objects such as vehicles, trash cans,
mailboxes, etc.,, because these also have a flat sur-
face but are smaller in size.

= Surface thickness: determines the thickness of clus-

tered plane points to accept it as a roof. This pa-
rameter is based on the noise of the point cloud,
the convexity, and the patterns of the roof surfaces.

Another important parameter in this algorithm is the
slope angle of clusters. The clusters with a slope angle
from 88°-90° will belong to the objects such as house
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walls or billboards. Therefore, plane point clusters having a
slope less than 88° are selected to identify the house roof
point layer. Within and near this roof layer that contains
flat surfaces, other roof details or auxiliary parts such as
chimneys and musty (stair covers on the roofs) are identi-
fied from the point cloud using a distance threshold. Sub-
sequently, the point cloud under the roof layer is classified
as the wall layer. The roof, auxiliary parts, and the wall
point clouds, together form the house point cloud layer.
These layers are an important input to automatically digi-
tize and build 3D models of the house blocks.

After all the aforementioned point cloud classifications,
the remaining point cloud data is treated as other feature
classes.

| First point determination

|

After filtered out ground points

and vegetation
Grouping same plannar points
which:
Larger than minimum | Roof top |
size 7
Plane thickness larger | Neighbouring points |
than data noise v

T | | Under-roof point searching |

| Final building |

Figure 6. Roof filter algorithm

3. Experiment and analysis

3.1. Experiment location and data

The LiDAR point cloud classification algorithms discussed
above are implemented in three study areas based on
three different housing characteristics in Hon Gai, Ha
Long city, Quang Ninh province (Figure 7). The first area
has an area of 27.6 hectares in Hong Hai ward, which is
a newly built urban area and includes several villas and
townhouses, schools, and sports fields. The second area
is an ancient urban area in Bach Dang ward having an
area of 27.3 hectares. This area has a very dense density
of houses, mainly houses that were built a long time ago,
and at the same time has an additional area with plants
providing food. The third area is the latest construction
area with many high-rise buildings along with the newly
opened coastal road, including parks, squares, and some
administrative buildings of the city. This area belongs to
the Hong Gai ward, with an area of 29.5 hectares.

3.2. Accuracy evaluation

The article uses the accuracy assessment method used by
Cai et al. (2018) to evaluate their process of automatic
digitization of objects from remote sensing images. This
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Figure 7. Assessment areas in Ha Long city: AT — Hong Hai; A2 — Bach Dang; A3 — Hong Gai

accuracy assessment method includes five components:
1) object match assessment; 2) accurate range assessment;
3) quantity-based assessment; 4) similarity-based assess-
ment and 5) distance-based assessment. However, for the
present study, only two of the above five and an additional
method need to be used: 1) to evaluate the object match,
2) to evaluate the accuracy range, and 3) to evaluate the
numerical accuracy.

Object match assessment is done by comparing the
area of the digitized object with respect to the reference
object. The overall fit index (Oy) value for the comparison
of the two objects is given by

1 AciNAr,  AciNAg

Q= Rl LR, M
v o2 Ac; AR,j

where A ; is the total area value of the reference objects,
Ac;is the value of the total area of the evaluated/digitized
object, and Ac; n Ag; is the interference area. O; helps
show the evaluated object’'s match compared to the ref-
erenced object.

The second evaluation method is the area-based as-
sessment method. This method helps to evaluate the level

A2

v
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of accuracy and completeness based on the two equations
below:

Pac = 2 @
AC = i
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where P, accuracy is the ratio of the area of the automati-
cally classified area (A¢) to the total area of the automati-
cally classified area (Apc). The P4 accuracy will range from
0 to 1; if all objects are classified correctly, then Py = 1.
Par is the completion level and is given as the ratio of A-
to the total area of the reference area (Agc). The P, com-
pleteness will range from 0 to 1. If all the auto-classified
objects exactly match the reference area, then Pyp = 1.
The third evaluation method is the quantitative meth-
od. This method helps to evaluate the level of accuracy
and completeness based on the following two equations:
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where Py accuracy is the ratio of the number of objects
automatically classified correctly (N() to the total number
of objects classified (Npc). The Py accuracy will range
from 0 to 1. If all objects are automatically classified cor-
rectly, then Pyc = 1. Pyg completeness is the ratio of (N()
to the total number of objects in the reference data (Ng().
The Py completeness will range from 0 to 1. If all the
auto-classified objects exactly match the reference objects,
then Pyp = 1.

4. Results and discussion

4.1. Evaluation of the accuracy of the ground
point classification algorithm

Area-based accuracy assessment is used to evaluate the
accuracy of the used automatic ground filtering algorithm.
The enhanced ground classification algorithm is imple-
mented on the built-in software, and the results are also
compared with the traditional PTD method implemented
on TerraSolid software.

The classified ground points are checked manually using
different views and ways of displaying them in TerraSolid
prior to calculating the statistics in the area. For the three
areas together, the total number of ground points identi-
fied with the traditional PTD algorithm is 675 000 points,
and with the improved PTD 1244000 points.

a)

b)
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In Figures 8a, and 8b, the orange points are the ground
points that have been correctly classified, and the blue
points are the points that are the ground but have not
been classified by the algorithm.

The total reference area of study area A1 is
Agc = 179 690 m2. For the traditional PTD method, after
manual testing and statistics: the area that is automati-
cally classified is Apc = 176 044 m? and the automati-
cally correctly classified area is A- = 161 380 m2. For the
improved PTD method, the total automatically classified
area is Apc = 178 529 m? and the correctly classified area
is Ac = 174 030 m2. Finding the similar values for study
areas A2 and A3, P, and Py, for all three study areas are
calculated and shown in Table 2.

Table 2. Results of comparing the accuracy and
completeness of the proposed ground filter algorithm with
that of the classical PTD algorithm

Pac Par
Areas | (Classical Enchanced Classical Enchanced
PTD PTD PTD PTD
Al 0.9167 0.9748 0.8981 0.9685
A2 0.8832 0.9515 0.8656 0.9493
A3 09017 0.9668 09149 09763

Figure 8. Inaccurate ground filter area statistics: a) a part of the image was derived from data of the A1 — Hong Hai area; b) a
part of the image was derived from data of the A2 — Bach Dang area
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From the experimental results, it can be seen that the
enhanced PTD ground classification algorithm has higher
accuracy than the traditional PTD ground classification al-
gorithm, which helps to reduce manual effort while saving
time and human resources.

4.2. Evaluation of point cloud automatic
classification accuracy

The process of automatic point cloud classification is per-
formed according to the proposed algorithm based on the
designed software of the article. The accuracy assessment
for all classified classes is performed by a manual inspec-
tion using multidimensional views of point cloud data in
TerraSolid. The ortho images are used as the reference
data.

4.2.1. Assessment of asphalt automatic classification
accuracy

In Figure 9, areas with red contours mark the size of the
entire area classified as asphalt. The gray point layer de-
picts the correctly classified asphalt point while yellow
points are the incorrectly graded asphalt point. The blue
outlines mark the actual asphalt area. The automatic road
classification algorithm is assessed using Psp and Pyc.

The total reference area of asphalt road in study area
A1 is Agc = 45760 m?, the total automatically classified as-
phalt road area is Apc = 49119 m2 and the correctly classi-
fied asphalt road area is A- = 45403 m2. Finding the similar
values for study areas A2 and A3, P, and Py for all the
three study areas are calculated and shown in Table 3.

Repeat the assessment with sites A2 and A3, the result
is shown in the following table:

Table 3. Results of the accuracy of an asphalt classification
algorithm for 3 study areas

three study areas. The variation in the results is because
some yard tiles also have low reflectivity, similar to the re-
flective level of asphalt. Additionally, the range of intensity
values of asphalt in an area also has a significant variation.
Therefore, the level of completion can be increased by in-
creasing the search parameters, however, accuracy may
get reduced due to the false detection of other objects.
Only A1 has considerable uniformity in the intensity values
of asphalt, hence, the classification algorithm provides the
best results in this area.

4.2.2. Evaluate the accuracy of automatic
classification of plant objects

In Figure 10, the green points are the tree points that have
been automatically correctly classified points. Purple points
are those, which are automatically classified but give false
results. The pink points are unclassified plant points. The
automatic plant classification algorithm is assessed using
Ppnc and Py

The total reference points belonging to the plant ob-
jects in study area A1 is Npc = 2013402, the total automat-
ically classified plant points is Ny = 2020698 and correctly
classified plant points N- = 2001080. Finding the similar
values for study areas A2 and A3, Pyc and Py, for all the
three study areas are calculated and shown in Table 4.

Table 4. Results of the accuracy of plant classification
algorithms for 3 study areas

Plant Prne Pnr
Al 0.9903 0.9939
A2 0.9718 0.9691
A3 0.9806 0.9869

From Table 4, it is observed that the accuracy and com-

Asphalt Pac Par
Al 0.9243 0.9922
A2 0.8815 0.9139
A3 0.8273 0.8592

The accuracy and completion achieved from the as-
phalt road classification algorithm varies up to 10% in the

pletion of the plant classification algorithm are relatively
high and consistent in all the three study areas. The aver-
age accuracy of the algorithm is 98.09%, and the average
completion at the level of 98.33% is achieved. The reason
for these high values can be due to one, more, or all of
the following reasons: (1) combining elevation with NDVI
values, (2) the plant objects in the areas are quite uniform
in species, and (3) there is less temporal variation in data

Figure 9. Statistics of classification results of asphalt roads



N. Q. Bui et al. Building algorithms and classification thresholds for objects from point cloud data to create 3D city models

Figure 10. High plant classification algorithm results

collection of the three study areas, hence, almost all plants
have green foliage that further enhanced the use of NDVI.
The misclassified plant points mainly belong to the roof-
top and hanging (from the wall) plants.

4.2.3. Assess the accuracy of automatic home
classification

In Figure 11, the red points are the roof points that have
been automatically correctly classified points. Blue points
are those, which are automatically classified but give false
results. The automatic plant classification algorithm is as-
sessed using Py and Pyp.

The total reference area of roofs in study area A1 is
Apc = 102822 m?, the total automatically classified roof
area is Apc = 103526 m? and the correctly classified roof
area is A- = 101970 m2. Finding the similar values for study
areas A2 and A3, P, and Py for all the three study areas
are calculated and shown in Table 5.

Table 5. Results of the accuracy of roof classification
algorithm for 3 study areas

Building Accuracy Completion level
Al 0.9850 0.9917
A2 0.9518 0.9676
A3 0.9691 0.9557

From Table 5, it is observed that the accuracy and com-
pletion of the roof classification algorithm is also high and
consistent in all the three study areas. The average accu-
racy of the algorithm is 96.86%, and the average comple-
tion at the level of 97.17% is achieved depicting that most
of the roof area is correctly classified. Study area A1 has
the highest accuracy and completeness due to similarity
in the house architecture in this area. Study area A2 has
the lowest accuracy because this area has a high house

density and moreover, the houses have distinctive features
as these were built decades ago. There are a few areas
that are misclassified as roof points. These are primarily
sunshades or bus shelters, which are sometimes similar to
house roofs. Also, due to the low height and large width,
unclassified roofs are mistakenly classified as ground ob-
jects, but these false cases account for a small percentage.

4.2.4. Evaluate the accuracy of the house automation
algorithm

The regional house digitization file is used as the collation
data to evaluate the accuracy of the automatic house digi-
tization algorithm (Figure 12) using O;; object-fit, Pyc area
accuracy, and P, area completeness, given in Section 3.

The accuracy assessment results of the home digiti-
zation algorithm for the three study areas are shown in
Table 6.

Table 6. Matching, accuracy results of home digitization
algorithm for three evaluation areas

_ ngsg Matching Accuracy Completion
digitization degree level
Al 0.9285 0.9450 0.9371
A2 0.9217 0.9288 0.9362
A3 0.9118 0.9331 0.9217

The above results show that the accuracy of the house
digitization algorithm is smaller than the accuracy of the
house classification algorithm. This is understandable be-
cause the houses are automatically digitized on the clas-
sified roof layer data. Therefore, the house classification
algorithm’s accuracy directly affects the home digitization
algorithm’s accuracy.

From Table 6, it can be seen that the accuracy of the
house automation algorithm proposed in the article is
relatively high, with the object matching values and the
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Figure 11. Roof data layer classification results: a) classification results of roof point class; b) statistics of classification results of

roof point class

3

v,

Figure 12. Reference data (left) and home automation results (right) of the assessment area

accuracy of all three sites being greater than 0.9; the
level of the completion of the three sites is as follows:
0.9371-0.9362-0.9217, showing that the algorithm has
digitized most of the houses. The houses that are miss-
ing or incorrectly digitized are mainly due to the complex
and/or heterogeneous roof structures, and roofs covered

with vegetation. Besides, with the match and completion
results above 0.9, it shows the high automation ability of
the algorithm, helping to reduce manual effort. Consider-
ing each area separately, it can be seen that A1 has a uni-
form square house, so it has better automatic digitization
results than A2 and A3.
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Figure 13. 3D city model of Hon Gai, Ha Long, Quang Ninh province: a) a part of the 3D model of A1 — Hong Hai area; b) a
part of the 3D model of A2 — Bach Dang area; c) a part of the 3D model of area A3 — Hong Gai area

4.3. Results of building 3D city models in Hon
Gai, Ha Long, Quang Ninh province

With the 3D terrain background, an image map, and con-
tent objects processed and classified according to the pro-
posed process, including vegetation, roads, hydrological
systems, buildings, and other geographical features, the
3D city model of Hon Gai area in Ha Long city, Quang
Ninh province, have been constructed (Figure 13).

The developed 3D city model can reach the Level of
Detail 2 (LoD2) and hence, can be used for many different
purposes such as Security — Defense; Urban design and
management, Spatial planning, Identification of environ-
mental issues and urban environmental management, Di-
saster management and mitigation, Application in Tourism
& heritage conservation, etc.

5. Conclusions

The article has built a set of automatic point cloud classi-
fication algorithms based on researching and synthesizing
existing point cloud classification algorithms and studying
the characteristics of LiDAR point cloud data. Newly re-

leased into eight different subclasses, with high accuracy.
With the proposed algorithm, we can completely build
automatic point cloud classification software, which will
be a tool to help improve efficiency and production effi-
ciency for point cloud data classification. While in Vietnam,
studies on point cloud classification algorithms are limited,
mainly focusing on ground point classification, and most
manufacturing units use available algorithms of commer-
cial software.

The experimental implementation of the point cloud
classification algorithm and the automatic process of
building 3D city models at Hon Gai experimental area,
Ha Long city, has demonstrated the ability to deploy real
data by the set of algorithms and the automatic process
of building 3D city models. The evaluation results in three
sites of the experimental area show that the set of algo-
rithms brings automation and high accuracy, and the 3D
city model is built automatically, which saves costs and
production time. This indicates that the set of point cloud
classification algorithms, the threshold of classification cri-
teria, and the automatic process of building 3D city mod-
els proposed in the article are highly automated, help-
ing to improve the efficiency of data production of the
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existing data at enterprises, contributing to increasing the
speed and reducing the cost of data production, creating
favorable conditions for developing more modern and ad-
vanced applications.
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