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Abstract. One of the main problems in modern economy is to construct an efficient organizational hierarchy alowing
to control the firm with minimal cost. This paper describes the mathematical model of optimal hierarchiesin firms. Optimal
hierarchies for several classes of cost functions are obtained. Particularly, sufficient conditions for tree optimality, 2hier-
archy (any manager has two immediate subordinates) optimality and two-tier hierarchy optimality are defined.
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1. Introduction

Any firm is an organization of economic agents (em-
ployees)®. In the organization employees conform to
some rules (mechanisms) regulating their activity and
providing the achievement of the general goal of the
firm.

The employees in the organization are specialized.
Therefore, they are more efficient than the set of self-
employed (non-organized) agents. But the employ-
ees with different specialization must be coordinat-
ed to achieve the general goal. Coordination is a
fundamental problem of any organization because
activity of a team must be planned and monitored,
individual goals must be coordinated, etc. Some or-
ganizational hierarchy? is created to fulfill the coor-
dination functions (administrative labor) in the firm.

1 Below we use the terms “organization” and “firm” as syno-
nyms.

2 The employees on higher tiers of the hierarchy have more au-
thority than the employees on lower tiers. It allows to control
the firm even when conflicts between the employees exist.

On the one hand, the hierarchy increases efficiency
of the employees' interactions (for example, due to
the planning and monitoring informational, material
and other flows). On the other hand, the performance
of coordination (control) functions is costly. In modern
economy organizations become increasingly more
complex. As a result, the proportion of managers in
organizations may exceed 40 % (see, for instance,
Radner, 1992). So, the key factor of firm's efficien-
cy is the optimality of the hierarchy.

Two-tier hierarchy can be optimal for small firms. In
this hierarchy workers on the first (lowest) tier are
immediately subordinated to a single manager. Asthe
firm grows, the single manager can not control all
interactions between the workers. Therefore, one has
to hire several managers to the second tier of the
hierarchy and to delegate them the responsibility to
control business interactions (flows) within the sub-
ordinated groups of workers. But interactions between
subordinated groups cause interactions between the
managers on the second tier. Several managers on the
third tier must control these interactions, etc. In such
away multi-tier hierarchy arises. A superior manag-
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er in the hierarchy has an authority over his or her
subordinates (managers or workers) and a subordi-
nate provides the information to and follows the in-
structions from his or her superiors.

The design of the hierarchy is one of the aspects of
organization design. The process of organization
design (and re-engineering) is divided into three
phases® (see, for instance, Mintzberg, 1979, William-
son, 1975):

I. Technology design: the number of workers, their
functions and interaction rules are determined.

[1. Hierarchy design: the number of managers and their
subordination are determined.

[11. Mechanism design: superiors authorities over their
subordinates are determined*.

Typicaly, an expert in the appropriate field performs
the technology design (phase 1).

There are many mathematical models of control
mechanisms (phase 111). Two-tier hierarchy mecha-
nisms (principal-agent problems) have been researched
in detail (see, for instance, Hart and Holmstrom, 1987,
Grossman and Hart, 1982 and 1983). There exist the
models of control mechanismsin some types of multi-
tier hierarchy (e.g. Melumad, Mookherjee and Re-
ichelstein, 1995) explore the delegation mechanism
in three-tier hierarchy).

In this paper we concentrate our attention on phase
Il. Several papers are focused on the hierarchy opti-
mization problem (phase Il) or joint optimization of
hierarchy and mechanisms (phases Il and I11). The
study of the hierarchic organizations was pioneered
by Simon (1957). His model is based on the follow-
ing assumptions:

1. The employees on the first tier are the only
workers performing production labor. All
employees on higher tiers are managers per-
forming only administrative labor (control
functions).

2. Any employee in the hierarchy has the only
immediate superior on the next hierarchical
tier. Thus, any hierarchy is a tree. And only
employees on adjacent tiers may interact di-
rectly.

3 In practice these three phases may not be altogether independ-
ent. Butitisrather difficult to optimize all these phases at once.
To simplify the problem each phaseis usually considered sepa
rately.

4 For example, employees’ rights and responsibilities are deter-
mined.
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3. The wage is the same for all employees on
one tier. The span of control (the number of
manager’s immediate subordinates) is the same
too. So, employees on one tier are assumed
to be identical.

4. The span of control is the same on different
tiers of the hierarchy.

5. The wage on the next tier is a constant mul-
tiple of the wage on a previous tier. The con-
stant is an exogenous number, which does not
depend on the tier and other parameters of the
hierarchy.

Williamson (1967) explores a similar model and
proves that firm size is limited because of “loss of
control” (employees’ efficiency decreases from an
upper tier to a lower tier). The interlayer efficiency
differential is an exogenously given constant. Calvo
and Wellisz (1978) explain the wage and the efficiency
endogenously. Employee's efficiency depends on his
or her wage and the span of control of the immedi-
ate superior. The larger the manager’s span of con-
trol is, the less is his or her subordinates effective-
ness, as individual subordinate is controlled rarely.
Using this assumption Calvo and Wellisz (1979)
consider the profit maximization model. The profit
equals the difference between income (the number of
workers multiplied by their effectiveness) and total
wages of al employees. In this model both different
spans of control and wages on different tiers are
possible. Thus, Calvo and Wellisz dispense stringent
assumptions 4 and 5 and prove important principles,
for example, that in the optimal hierarchy the high-
er tier, the more employee’s efficiency and wage per
efficiency unit.

Keren and Levhari (1983) optimize the hierarchy’s
decision-making time® (delay on each tier equals the
span of control plus constant). Average cost per
employee is calculated for the hierarchy with mini-
mal decision-making time. This cost allows to cal-
culate the limits of the firm’s size. Similar informa-
tion processing models are explored in numerous
papers (see, for example, Van Zandt, 1996; Bolton
and Dewatripont, 1994; Radner, 1993).

Qian (1994) explores Calvo and Wellisz (1979) model
by using optimal control techniques, a method pio-
neered by Keren and Levhari (1979). Continuous
approximation is considered (continuous number of
employees on each tier). In this case, the optimiza-

5  Marschak and Radner (1972) study the effect of delay on the
value of decisions. Thisis one of the first models of hierarchy
with managers calculating some “decision” (control action).
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tion problem is simpler than discrete problem®. If any
employee’s effort choice is restricted to only zero or
maximal effort, then in Calvo and Wellisz model the
optimal employee’'s wage depends only on the span
of control of his or her immediate superior’. To
maximize profit one has to minimize total wages
because employees’ efficiency (efforts) is maximal.
In this case Qian (1994) obtains the optimal hierar-
chys®.

Like Qian, in this paper we consider the problem of
searching out optimal hierarchy, which minimizes total
wage of employees (total cost). However, we differ
from Qian and other cited above papers in two im-
portant respects. First, we consider manager’s wage
function depending not only on the span of control,
but also on sets of workers controlled by the employ-
ees immediately subordinated to the manager. So,
manager’s wage depends on “specificity” and “com-
plexity” of manager’s administrative labor (such wage
function is called “sectional” in this paper). Thus, we
do not assume that employees on one tier of the hi-
erarchy are identical. Second, we consider not only
tree-like hierarchies, but also more complex hierar-
chies with multiple subordination or cross-tier sub-
ordination®. Therefore, we differ from papers, cited
above, because we dispense assumptions 2 and 3 (this
paper is based only on assumption 1). The problem
of searching out optimal hierarchy considered in this
way is much more complicated. To explore this prob-
lem we base on the additional assumption: any hi-
erarchy provides the maximal efficiency of employ-
ees. In this case to maximize profit we have to find
a hierarchy with minimal total wage (total cost). Thus,
control mechanisms (phase I11) are not considered and
manager’s wage (cost) function is given exogenous-
ly%, We suppose that if employee’s wage equals to
the cost then his or her efficiency is maximal. Par-

6 Van Zandt (1995) examines the validity of continuous approxi-
mation of discrete problem of searching out optimal hierarchy.

7 Suppose any employee works at full efficiency or shirks. In
this case the employee compares expected loss of wage (the
wage multiplied by the loss probability) and shirked time util-
ity. To induce the employee to work efficiently one should cal-
culate such wage that expected loss is greater than or equal to
the utility. Loss probability inversely depends on span of con-
trol of the immediate superior. Therefore, optima wage lin-
early depends on the superior’s span of control.

8 Also Qian (1994) explores more complex cases.

9 Italowsto proveinsightful optimality conditionsfor tree, sym-
metric tree, etc.

10 In this paper we consider different cost functions. For exam-
ple, these functions may be defined using technologica net-
work (the result of the phase |) and possible controlling mecha-
nisms (the result of the phase I11).

ticularly, we entirely abstract from incentive prob-
lems!?,

Using an example of sectional cost function one can
explore optimality of divisional, functional or matrix
hierarchy!? and prove many dependences considered
without formal proof in management science litera-
ture's. So, the proposed model explains some effects
in real firms. Sectional functions are aso interesting
from the mathematical point of view: any additive
(with respect to manager’s addition) and anonymous
(with respect to manager’s permutation) hierarchies
cost function can be represented in sectional form
(Mishin and Voronin, 2003).

In this paper we explore optimization methods that
can be used to obtain the optimal hierarchy for nu-
merous classes of sectional cost functions regardless
of function’s specificity and practical interpretations.
Particularly, we define sufficient conditions for tree
optimality, 2hierarchy (any manager has two imme-
diate subordinates) and two-tier hierarchy optimali-
ty. So, the proposed approach allows to construct the
theoretical methods, which can be used to solve many
problems that have numerous applications in econom-
ics. Therefore, the sectional cost function appears to
be a useful compromise between detailed description
of the real firms and possibility of mathematical
modeling.

In the next section we describe the model and con-
sider simple examples. In Section 3 we explore ar-
bitrary sectional cost function and solve the problem

11 |tiseasy to create incentive mechanism under complete infor-
mation: costs of maximal efficient employees are compensated
and wages of other employees equal to zero (Mishin, 2004).

12 Comparison of divisional (M-form (multi-divisional form)),
functional (U-form (unitary form)) and matrix hierarchies is
well-known aspect of hierarchy optimization problem. Advan-
tagesand disadvantages of thesetypesof hierarchy are discussed
in many papers (see, for example, Mintzberg, 1979). Recently
developed models allow to compare mathematically divisiona,
functional and matrix hierarchies. For example, Maskin, Qian
and Xu (2000), Qian, Roland and Xu (1997) explain mathemati-
cally advantages of the divisional hierarchy over the functional
hierarchy.

13 For example, Mishin (2005) shows that divisional, functional
or matrix hierarchy is optimal for any size of the firm in some
circumstances, managers on lower hierarchical tiers must con-
trol the most intensive flows because it helps to decrease the
strategic managers costs; the matrix hierarchy is stable with
respect to standardization and stability decrease, on the con-
trary, divisional and functional hierarchies are stable with re-
spect to standardization and stability increase; the divisional
hierarchy is stable with respect to horizontal integration and
production volume increase, on the contrary, the functiona hi-
erarchy is stable with respect to vertica integration and func-
tional links intensity increase.
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of searching out optimal hierarchy for several cas-
es. In Section 4 we use these results to analyze cost
functions corresponding with different types of inter-
actions between manager and immediate subordinates.
Possible extensions of the introduced model are dis-
cussed in Section 5. All mathematical proofs can be
found in Appendix A.

2. The model of optimal hierarchy

2.1. Workers and managers. Hierarchies

Let N={w,,...w.} be aset of workers who can in-
teract with each other. Typically we denote the work-
ersas w,w,w'e N . In this paper we suppose that the
set of workers N is given and fixed.

Let M denote a finite set of managers who control
workers' interactions. Typical managers will be de-
noted as mm,m"',;m,m,,...e M. Let v=NUM de-
note a set of all employees of the firm (workers and
managers). For each manager we need to define his
or her subordinates (workers or other managers). Let
us define a set of subordination edges E cVxM . Any
edge (v,m)e E means that the employee veV isan
immediate subordinate of the manager me M . Thus,
the edge is directed from the immediate subordinate
to the immediate superior. An employee veV isa
subordinate of the manager me M (manager mis a
superior of the employee V), if there exists a path from
v to m.2 We will say that any superior controls his
or her subordinates (any subordinate is controlled by
his or her superiors).

Definition 1. A directed graph H =(NuUM,E) with
a set of managers M and a set of subordination edg-
es Ec(NuUM)xM is the hierarchy controlling the
set of workers N if H is acyclic, any manager has at
least one subordinated employee and some manager
controls all workers. Let Q(N) denote the set of all
hierarchies.

Definition 1 ex ante excludes graphs with cycles (each
manager in a cycle is a superior and subordinate of
another managers in the cycle, which contradicts the
main point of the term “subordination”) and “man-
agers’ without subordinates. According to Definition
1 there exists a manager controlling all workers.
Therefore, any set of workers has a common supe-
rior and any hierarchy is able to control all workers
interactions.

14 There exists such sequence of managers my, M,,...,M, e M
that the employee v is an immediate subordinate of the man-
ager m, ((v,my) e E),themanager M, isanimmediatesub-
ordinate of the manager M,,; ((M;,M;,1)€ E) for each
1<j<k-1, m =m.
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Any nonempty set of workers sc N will be called
a group of workers. We can start from a manager m
and consider his or her immediate subordinates. Af-
ter that we can consider their immediate subordinates,
etc. Acyclicity implies that finally we determine
nonempty set of workers subordinated to the manager
m. This set s, (m)c N will be called manager’s m
subordinated group of workers in some hierarchy H.
In other words, the manager m controls the group of
workers s,(m). We will leave out inferior index “H”
in notation s,(m) if it is clear what hierarchy we
analyze. It will be convenient to think of worker
we N as having a subordinated “group” s,,(w)={ w}
which consists of this worker only. In other words,
any worker we N “controls’ the elementary group

s,(W)={w} in any hierarchy He Q(N).

In Fig 1 ahierarchy is constructed over the horizontal
plane that corresponds with workers. In the figure the
part of hierarchy subordinated to the manager mis
shown. This part consists of immediate subordinates
of the manager m and his or her subordinates not
controlled immediately. The subordinated group of
workers s,(m) is outlined by ellipse.

immediately manager m
%l})&rg)}ggted immediately

subordinated employee

subordinated employee subordinated employee

subordinated
group of
workers

Fig 1. An example of manager and subordinated
group of workers

Below we prove two technical lemmas which are
necessary only to prove another proposition.

Lemma 1. For any hierarchy H and any manager
me M the equality s,(m)=s,(v)uU...usy (V)
holds, where v,,...,v, are all immediate subordinates
of the manager m. For any employee v subordinat-
ed to the manager m the inclusion s, (v) c s, (M)
holds.

Consider an example. In Fig 2 a manager m has two
immediate subordinates m; and m,. The group of
workers s(m) ={w,, W,, W, W,} is subordinated to
the manager m. The groups s(m,)={w,,w,} and
s(m,) ={w,, w,} are subordinated to the managers m;
and m, respectively. Thus, the group s(m) is divided
into the subgroups s(m;) and s(m,):
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Fig 2. @ An example of 2-tree, b) An example of non-tree hierarchy, c¢) Two-tier hierarchy

{wy, W, wg,w,} ={wy,w,} U {wg,w,}. In this example
subgroups do not overlap. In general case subgroups
can intersect (see Fig 2 b).

Definition 2. A hierarchy H is a tree, if only one
manager m has no superiors and all other employees
have exactly one immediate superior. The manager
m will be called the root of the tree.

An example of the tree is shown in Fig 2 a. Hierar-
chy in Fig 2 b is not a tree because one manager has
two immediate superiors.

Lemma 2. In any tree any manager’s immediate
subordinates control non-overlapping groups.

Thus, in the tree the immediate subordinates of any
manager do not “duplicate” each other (do not con-
trol the same worker).

Definition 3. A hierarchy H is r-hierarchy if any
manager has no more than r immediate subordinates,
where ¢ > 1 is some integer number. If r-hierarchy
H is a tree then H will be called r-tree.

The term span of control (the maximal number of
immediate subordinates, which can be controlled by
one manager) is often used in practice. In our terms,
if the span of control equals r then the hierarchy is
r-hierarchy. Lemma 2 implies that immediate subor-
dinates of any manager in a tree control non-over-
lapping groups. Thus, the maximal number of imme-
diate subordinates equals n (if all immediate
subordinates are workers). So, the span of control in
any tree does not exceed n. And two-tier hierarchy
with single manager controlling all workers (see
Fig 2 ¢) has the maximal span of control.

2.2. Sectional cost functions. Optimal
hierarchies

Definition 4. Cost function of the manager me m
inahierarchy H=(NUM,E)e Q(N) is caled sectional
if it is given by:

C(S4(Vp)s -5 SH(VD)s (1)

where v,,...,v, are all immediate subordinates of the

manager m, s,(v,), ..., S,(v,) are groups controlled by
employees, v,, ..., V,, ¢(-) isanonnegative rea func-
tion of set of groups.®® Cost of total hierarchy equalsto
total managers costs:

c(H) = emc(sy (W), ..., sy (W) (2

A hierarchy H e Arg min c(H) with minimal

HeQ(N)
cost is called the optimal hierarchy.

Several optimal hierarchies may exist. This paper
focuses on the problem of searching out some opti-
mal hierarchy (we will reference to it as to “optimal
hierarchy problem”). So, for given cost function!” we
need to search out an optimal hierarchy (the number

of managers and their subordination) from Q(N),
which minimizes the cost of control of the workers.

Let us explain Definition 4 using an example (see
hierarchy in Fig 2 a). The manager m controls the
group {w,, w,, w,, w,} with the help of two subor-
dinated managers m, and m,. Managers m, and m,
control the groups {w,, w,} and {w;,, w,} respectively.
Suppose managers m; and m, cope with controlling
of the subordinated employees. In this case the cost
of the manager m does not depend on controlling
methods inside the groups { w;, w,} and {w,, w,}. For
example, the managers m, and m, can control sub-
ordinated workers immediately or with the help
of some subordinated managers. It is of no importance

15 The function c(-) depends on the set {s,(v,).....s,(v)} of
groups and does not depend on order of these groups. So, the
manager’s cost does not depend on numeration of his or her
immediate subordinatesv,,...,v,. Someof groupss,(v,), .. .S, (V)
may be the same. In this case the “set” {,(v,),....S,(v)} con-
tains repeated elements.

16 In expression (2) and below the symbol ¢(-) denote both man-

ager’s and hierarchy’s cost.

17" Cost function may be determined directly (for example, using
accounting information about manager’s cost). Moreover, some
“typica” cost functions may be considered (see examples be-
low).
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for manager’s m cost because direct interactions
between m and workers are not necessary. Definition
4 implies that the cost of the manager depends only
on division of subordinated group of workers between
immediately subordinated employees. In the exam-
ple the group {w,, w,, w,, w,} is divided into sub-
groups: {w,, W,, Wy, W} ={w,, w,}{w,, w,}. So, the
cost of the manager m equals c({w,, w,} {w;, w,}).
Thus, we suppose that the cost of a manager depends
only on the “section” 8 controlled by the manager im-
mediately. In Fig 2 a the “section” of the manager m
consists of m and subordinated managers m, and m,.
The cost of the manager does not depend on other parts
of the hierarchy, on individual efficiency of manag-
ers. Generaly the cost of the manager can depend on
individual efficiency, hierarchical tier, superiors or the
whole hierarchy. Such cost functions are not section-
al and are not considered in this paper.

In Definition 4 some of the groups s,,(v,), .., S4(%)
can be the same or nested one into another. Suppose
SH (V1) < sy (Vo) - So, the employee v, controls part
of the group subordinated to the employee v,. Thus,
one immediate subordinate of the manager m dupli-
cates part of the labor of another immediate subor-
dinate. Below we consider only sectional functions
satisfying the following assumption:

c(SH (V2) -, SH (W) <
c(sn (v), SH (V2), -5 SH (Vi)

3
for any groups sy (Vq) < Sy (V2) . For example, “aux-
iliary” immediate subordinate v, can waste manager’s
mtime discussing some problemsinsidethegroup s (v,)
(such problems are completely controlled by the man-
ager v,). So, we can remove subordination edge (v,, m)
with no increase of manager’'s m cost. After removal
costs of other managers do not change because groups
controlled by al managers do not change.

In some cases in this paper the sectional cost func-
tion is given by simplified notation c(s,, ..., ) instead
of c(sy(vy),....S4(Vv)). The value of the function
c(s,,...,S,) corresponds with the cost of some man-
ager with immediate subordinates controlling the

groups s;;...,S,.

2.3. Examples of hierarchies controlling
technological interactions

Let us consider several examples of sectional cost
function depending on technological flows between

18 For example, department, division or some over business unit.
84

workers. Consider a flow function, which is given by:

i (NUWen D)X (NUfWen ) > RP (4)

wherew_ isan environment interacting with the work-
ers. Thus, for any pair of workers w',w'e N vector

f (w,w") means the flow intensity between w and

w' (p-dimensional vector with nonnegative real com-
ponents). Each component is an intensity of one type
of workersinteractions or one type of flow (e.g., mate-
ria, informationa or other type of flow). Flow func-
tion f will be called weighted technological network

f.2Forany we N thevauef(w, ,w)isaflow intensity
between the worker w and the environment. We suppose
that the technological network is undirected

(f(w,w")=f(w"',w) for any w,w'e N U{Wg})-
There is no link between y and y/ if and only if
f(w,w")=0 (w and yw arelinkedif and only if there
are some flows between w and w”).

Consider an example of managers administrative la
bor. Suppose a conflict causes violation of interaction
between workers w, and w; (see the hierarchy in Fig
2 ). The worker w, informs the immediate superior
m, about this interaction problem. The manager m, can
not solve the problem because the worker w; is not
subordinated to m,. Similarly the manager m, can not
solve the problem after reception of worker’s w; in-
formation. As aresult, managers m, and m, inform their
common immediate superior m about the problem. The
manager m makes some decision. Managers m; and m,
pass this decision to the workers w, and w,. In such
away the interaction problems are eliminated. There-
fore, the manager m controls the flow f(wz,ws) and
managers m, and m, participate in this flow control.
This example shows that a manager fulfills “obliga-
tions’ of two following types:

1. The manager controls such flows within subordi-
nated group that are not controlled by subordinated
managers. For example, in Fig 2 a the manager m
controls the flow f(w,,w,). The sum of such flows will
be called the internal flow of the manager m and

denoted FT(m).

19 Inred firmsworkers interaction rules are frequently not for-
malized. In this case, one can describe the technological net-
work using, for example, function modeling methodol ogy
(IDEF). One defines some aggregated functions (purchasing,
production, sales, document processing, etc.) and makes de-
tailed decomposition (fragmentation) down to elementary func-
tions performed by each specific worker. During the decompo-
sition process, one defines interactions between the workers.
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2. The manager participates in control of the flows
between the subordinated group and all other work-
ers, the flows between the subordinated group and the
environment. For example, in Fig 2 a the manager m,
participates in flows f(w,,,w;) and f(w,,w,) control.
The sum of such flows will be called the external flow

of the manager m and denoted F5¢(m).

Obvioudly the values

Rt (m) = T f(w,w)
{wwlcsy(m),
{w,w}ezsy (vj)foreachl<j<k
and
FG(m) = > f(W,w")
wesy (m),
e (N\sy (M)A Wery }

depend only on groups s (V,),..., S,(v,) controlled by
all immediate subordinates of the manager min the hi-
erarchy H. Therefore, we can consider the following
sectional cost function depending only on total manag-
er’'s flow:

c(sH (W), SH (i) = (R (m) + FS (m)) »

where ¢: Rf —R, is non-decreasing function from

Rf to R.. The fact that the function ¢(-) is non-de-

creasing means that manager’s cost does not decrease
when the “volume” of labor increases.

2.3.1. The expediency of multiple-subordination

Consider technological network with four workers and
the following intensities of flows: f(w,,,w,) = 3,
flwy,w,) = 1, f(w,,wy) =5, f(wg,w,) =1, flw,w,, ) =3
(see Fig 3). This network may be interpreted as a
process line (“business process’): the worker w, gets
raw materials from the vendors and passes it to the
worker w,,. The worker w, executes some production
operation and passes the results to the next worker
w;, etc. The last worker w,, dispatches finished prod-
ucts to the customers. Intensity changes (3,1,5,1,3)

may be caused by the specific nature of interactions

my

my

3 W 1 w, 5 w 1 W 3

Fig 3. Optimal hierarchy controlling asymmetric process line

between different workers. If all intensities are the
same then the process line will be called symmetric.

Consider manager’s cost functiong(x) = x3, where x
is the value of the manager’s flow. It is easy to see
(Mishin, 2005) that the optimal hierarchy H looks like
the hierarchy in Fig 3 and all trees are non-optimal %,
The manager m; has two immediate superiors. So,
there exists optimal hierarchy with multiple-subordi-
nation.

One of interesting questions is the optimality of trees.
Tree isatypica hierarchy for many real firms. Con-
sidered example shows that in some cases there does
not exist optimal hierarchy among the trees. Mishin
(2005) proves the optimality of the tree for any sym-
metric process line and any non-decreasing function
¢(-). Below we consider a more general sufficient
condition for optimality of the tree.

2.3.2. Firm growth with control cost decrease

Consider the asymmetric process line with four work-
ers, the flows f(w,,, w;) = 1, f(w,, w,) = 5,
f(w,, wy) =1, f(w;, w,) =5, f(w,, w,,) =1 and the
manager’s cost function ¢(x)=x*, where x is the
value of the manager’s flow. To start with we sup-
pose that the technological network N = {w,, w,}
consists only of workers w,, and w,. So, workers w,
and w, are not part of the firm (for example, the
vendor and customer). Then the optimal hierarchy
with cost 112 =121 is shown in Fig 4 a

Assume we can extend the firm by adding workers
w; and w,. For example, this extension can be inter-
preted as follows. Large wholesale company buys the
production firm (the “worker” w,) and the chain of
shops (the “worker” w,) to control all the stages from
production to the ultimate consumer. Large flow
f(w,,w,) = 5 may be caused by purchasing problems,
e.g. large quantity of defective goods. Similarly the
large flow f(w,,w,) =5 may be caused by some selling
problems, e.g. customers often return defective goods.

Thus, after the extension the firm controls the whole
technological network N = {w,, w,, W, w,}. So, we

20 Managers m;, m,, m;, m, flows equal 7, 5, 5, 6 respectively.
So, ¢(H)=7°+5°+5>+6° =809 Inany optimal hierar-
chy any manager on the lowest (second) tier controls exactly
two workers (otherwise his or her cost is greater than or equal
to 1000>809). And it is easy to see that in any optimal hierar-
chy there is a single manager m; on the second tier and m;
immediately controls workersw, and w; (controls the maximal
flow f(w,,w,)=5). We can cal culate costs of al trees controlling
employees w;, m, w,. It allows to prove that al trees are non-
optimal. And it is easy to see that the cost c¢(H) = 809 can not
be further diminished. Therefore, H is optimal hierarchy.
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S w, 1 w5

1 w5 w1 w5 w1
Fig 4. Firm growth with control cost decrease

can reconstruct the hierarchy as shown in Fig 4 b.
We can hire two managers on the second tier and give
them the responsibility to control the greatest flows
f(w,, w,) = 5 and f(w,w,) = 5. The cost of the re-
constructed hierarchy equals 72 +72% +3? =107 .

So, control cost can decrease with the technological
network growth (including new workers, who were
part of the environment). It could be a reason to buy
some unprofitable business because it can reduce cost
of control of the main business. Such facts often occur
in practice?.

3. Classes of sectional cost functions and
corresponding optimal hierarchies

3.1. General form of optimal hierarchy

Proposition 1. There exists such optimal hierarchy

that the following conditions are satisfied:

(i) all employees control different groups of work-
ers;

(i) only one manager has no superiors. All other
managers and all workers are subordinated (may-
be non-immediately) to this manager;

(iii) immediate subordinate of a manager does not
control any other immediate subordinate of this
manager .

The condition (i) means that there is no pair of man-
agers fully duplicating each other’s administrative
labor. In other words, there are no managers control -
ling the same group of workers. In Fig 5 a the ex-
ample of such duplication is shown. Particularly, the
condition (i) leads to the fact that any manager has

21 For example, in'90 s of the 20th century many Russian food
plants were transformed into vertically integrated companies
by acquisition of farmsinthe corresponding region. Thesefarms
were unprofitable but provided regular supplies of cheap raw
materials.
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at least two immediate subordinates (otherwise Lemma
1 implies that the manager and his or her only im-
mediate subordinate control the same group of work-
ers).

The condition (ii) means that exactly one manager
m has no superiors. This manager controls all work-
ers and all other managers in the hierarchy??. The
manager mwill be called top manager. In Fig 5 b there
are two managers with no superiors. So, the condi-
tion (ii) is violated. Obviously the “redundant” man-
ager can be removed with no cost increase.

The condition (iii) can be interpreted as follows.
Assume the manager m, is immediately subordinat-
ed to the manager m. Then m does not immediately
control the subordinates of the manager m,. The
condition corresponds with “normal” activity of the
firm, when any manager controls subordinated em-
ployees only by means of his or her immediate sub-
ordinates, but not directly. In Fig 5 c the top man-
ager m directly controls the workers w, and wj,
although these workers are also controlled by sub-
ordinated managers m, and m,,.

Proposition 1 simplifies optimal hierarchy problem
because we can ignore hierarchies that violate con-
dition (i), (ii) or (iii).

Woow W W

woow W W

C m

my M

woow W W

Fig 5. Hierarchies a-c violate conditions
(i)-(iii) respectively

22 The condition (ii) corresponds to the practice of organization
design: there is one and only one top manager whose decisions
must be implemented by all other managers and workers (for
example, the top manager can eliminate a conflict between any
set of employeesin the firm).
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3.2. Tree optimality condition

It is important to obtain the conditions when some
tree is the optimal hierarchy. Below we consider the
sufficient condition for tree optimality. Thisis the so-
called group-monotony condition.

Definition 5. A sectional cost function is called group-
monotonic if the manager’s cost does not decrease
with the expansion of the groups controlled by the
immediate subordinates and with the addition of new
immediate subordinates. So, for any groups s,,...,s,
the following inequalities hold:

c(s, 8-, %) <€(s,Sp,..., ) » Where s contains s;
(s, cs); c(s,5,...,8) <c(s,5,..-,8) » Wwhere s is
any group.

Let us explain Definition 5 by the example. Any man-
ager m communicates with his or her immediate subor-
dinates to solve their interaction problems (correspond-
ing cost may be determined by somenon-decreasing func-
tion x(-) depending on the number of immediate subor-
dinates). Also the manager m may solve part of prob-
lems inside each of the groups controlled by immediate
subordinates® (corresponding cost may be determined
by some non-decreasing function ¢(|s;u...us|) de-
pending on the size of the group s, u...uUs,, where
S,...,S, are the groups controlled by all immediate sub-
ordinates of the manager). Thus, we can consider the
following example of cost function:

eS80 = xR +els U OS] (6)

Obviously function (5) does not decrease with any
expansion of the groups s,,...,s, and with any addi-
tion of new immediate subordinates. Therefore, (5)
is an example of group-monatonic function.

In some practical situations a manager can decrease
his or her cost by increasing the number of immedi-
ately subordinated managers (“assistants’). In such
cases the function is not group-monotonic. Howev-
er, if the “assistants’ coordination cost is sufficient-
ly high then it is reasonable to model the firm with
the help of group-monaotonic function.

Theorem 1. If sectional cost function is group-mo-
notonic then there exists optimal tree.

According to this theorem if cost function is group-
monotonic then optimal hierarchy can be found among
the trees?®. Therefore, to find optimal hierarchy we

23 For example, the manager can perform some administrative | abor
when any subordinated worker is dismissed (interview with a
new worker, signature of some documents, etc.).

24 Mishin (2005) provesthat the group-monotony issufficient con-
dition but not requirement for the tree optimality

can verify the inequalities of Definition 5. If these
inequalities hold then optimal hierarchy problem is
much simpler because we only need to find the min-
imal cost tree. Such tree can be found using the al-
gorithms developed by Mishin and Voronin (2002b,
2003). For an arbitrary sectional cost function the
exact algorithm’'s complexity is too high (the mini-
mal cost tree can be found only for 15-20 workers®).
Consider the cost function given by the expression
c(sy|.-...|s«)) (for example, function (5) can be given
by c(s.....]s)).% In this case the exact algorithm
finds the minimal cost tree for 70-100 workers?’. If
the cost function is group-monotonic then optimal
hierarchy problem can be solved using these algo-
rithms. For other cost functions the tree obtained by
the algorithms may be non-optimal hierarchy. Still this
tree is useful, for example, to compare the best tree
with actual hierarchy in the firm.

3.3. Hierarchy and two-tier hierarchy
optimality conditions

Definition 6. Sectional cost function is narrowing if
for any manager m with immediately subordinated
employees v,,...,v,, k>3 itis possible to resubordi-
nate several employees fromv,,...,v, to new manager
m, and immediately to subordinate m, to the manager
m with no hierarchy cost increase. Sectional cost
function is widening if any such resubordination does
not decrease cost of hierarchy.

Let us explain Definition 6. In Fig 6 a manager m
has three or more immediate subordinates v,,...,V,.
Consider a narrowing cost function. With no hierar-
chy cost increase we can hire new immediate supe-
riorm, forj (1< j<k) employeesfromv,,...,v,. After
the hire the manager m controls these employees with
the help of new manager m, but not immediately. For
example, the result of employees v Vi resubordi-
nation is shown in Fig 6 b.

Generally any j employees can be resubordinated. So,
there exists such permutation (i,,...,i,) of numbers

25 Using personal computer in several minutes.

26 Manager’s cost depends only on the span of control k (number
of all immediate subordinates) and on the numbers \Sl Sk\
of workers in the groups controlled by the immediate subordi-
nates (but not on individual workers in these groups!).

27" Mishin and Voronin (2003) also prove that it is impossible to
sufficiently reduce exact algorithm’s complexity. In the paper
noted above some heuristic algorithms are developed. These
algorithms have much less complexity and find trees with ap-
proximately minimal cost. For arbitrary function given by
C(‘Sl Sk‘) two heuristic agorithms are developed. Their
complexities grow as n? and n3.
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) Vi Vi Via Vi

Fig 6. Resubordination for narrowing
or widening cost function

(1, ..., K) that employees V;;---,V; are resubordinated.
If cost function is narrowing then for any groups
S; =84(Vy), -, S =S4(v,) controlled by employees
V,...,V, Some of them can be resubordinated with no
hierarchy cost increase. Thus, definition of narrow-
ing cost function can be written as follows. For any
groups s,, ..., S,, k>3 there exist such number
1< j<k and permutation (i,,...,i,) that the follow-
ing inequality holds:

c(sl,...,sk)zc(sl,...,sqj )+
c(slu...usj,sjﬂ,...,sik)' (6)

Left-hand member of the inequality is the cost of the
manager m before resubordination (see Fig 6 ). Right-
hand member of the inequality equals to sum of
manager’s m, cost ¢(S,;-»§;) and manager's m cost
c(s, v...Us .5 .. S,) after resubordination (see the
example in Fig 6 b). Other managers costs do not
change. So, inequality (6) holds if and only if cost
of total hierarchy does not increase. Thus, for nar-
rowing cost function we can hire manager’'s m “as-
sistant” m, undertaking part of administrative labor.
After that the number of manager’'s m immediate
subordinates decreases. So, the hierarchy becomes
“narrower” (the span of control decreases).

Consider a widening cost function. Definition 6 leads
to the fact that any described above resubordination
does not decrease the cost of a hierarchy. So, for any
groups s,,...,S,, k>3, any number 1< j <k and any
permutation (i,,...,i,) the following inequality holds:

c(sl,...,sk)gc(sl,...,sj )+

O(Sy VUS| Sy i) @
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Thus, for widening cost function it is impossible to
decrease the cost of a hierarchy with the help of hiring
“assistants’.

If inequality (6) or (7) is violated on some overlap-
ping groups s,,...,s, but held on any non-overlapping
groups (i.e. sNs; =9 for al i#j) then cost func-
tion will be called narrowing on non-overlapping
groups or widening on non-overlapping groups re-
spectively.

Theorem 2. If sectional cost function is narrowing
then there exists optimal 2-hierarchy.

Corollary (from Theorems 1 and 2). If sectional cost
function is narrowing on non-overlapping groups and
group-monotonic then there exists optimal 2-tree.

Therefore, to find optimal hierarchy we can verify
inequality (6). If this inequality holds then the cost
function is narrowing and we can consider only
2-hierarchies with each manager having two imme-
diate subordinates (minimal span of control) because
there exists optimal 2-hierarchy. In this case optimal
hierarchy problem is much more easier. If cost func-
tion is group-monotonic then we have to verify ine-
quality (6) only on non-overlapping groupss,, ..., S,.
If the inequality holds then the corollary leads to the
fact that there exists optimal 2-tree®s.

Theorem 3. If sectional cost function is widening then
two-tier hierarchy is optimal.

Corollary (from Theorems 1 and 3). If sectional cost
function is widening on non-overlapping groups and
group-monotonic then two-tier hierarchy is optimal.

Therefore, to find optimal hierarchy we can verify
inequality (7). If this inequality holds then the cost
function is widening and two-tier hierarchy with single
manager is optimal (singe manager controls all work-
ers immediately, span of control is maximal). If cost
function is group-monotonic then we have to verify
inequality (7) only on non-overlapping groups
Sy, ---» S If the inequality holds then the corollary
leads to the fact that two-tier hierarchy is optimal.

Theorems 2 and 3 show that narrowing functions
contrast with widening functions?. Narrowing con-

28 Minimal cost 2-tree can be found using the algorithms devel-
oped by Mishin and Voronin (2003).

29 Consider manager’s cost function ¢() depending only on his
or her internal flow in technological network. If o() is
superadditive then cost function is narrowing and if ¢(-) is
subadditive then cost function iswidening (Mishin (2005)). So,
narrowing/widening conditions generalize superadditivity/
subadditivity conditions or convexity/concavity conditions
(these conditions are equivalent for one-dimensional flows and

9(0) =0).
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dition implies optimality of 2-hierarchy, which con-
tains the most number of managers. Each manager
performs minimal quantity of administrative labor
(controls only two immediate subordinates). On the
contrary, widening condition implies optimality of
two-tier hierarchy, which contains single manager
performing all administrative labor (controls all n
workers immediately).

It is easy to see® that both group-monotonic and non
group-monotonic cost function may be narrowing,
widening or neither narrowing, nor widening. More-
over, in extreme cases a sectional function may be
both narrowing and widening. Interrelationship be-
tween classes of functions is shown in Fig 7. Types
of optimal hierarchies are shown in the figure too (a
tree is optimal for group-monotonic functions, two-
tier hierarchy is optimal for widening functions, a
2-hierarchy is optimal for narrowing functions, a
2-tree is optimal for group-monotonic and narrowing
functions).

4. Examples of cost function for different
types of interaction

Suppose for each worker we N some worker’s com-
plexity u(w)>0 (positive real number) is given. Com-
plexity may correspond with “work content” of the
worker, his or her professional skills, etc. Complex-
ity of arbitrary group of workers sc N may be
defined as total complexity of all workers in s:
u(s) =Y (W) . For example, complexity of the
group may correspond with total “work content” of

30 See examples below and examples in Mishin (2005).

all workers in the group. Sectional cost function
depends only on groups s,,...,s, controlled by all
immediate subordinates of the manager. Let us con-
sider several examples of such sectional cost func-
tion that manager’s cost depends only on complexi-
ties:

C(Spr -0 Sk) =[u(s)* +

, |
o u(s)% - maxu(s)®, sl O

C(sy, -0 8) =[S + .+ 1(s) %P (1)

O(S1... 1 S6) =

[M(S)a/max(u(sl)“,,,,,u(sk)(x)_l]ﬁv (1)

C(Sp-Sk) = [Tk () ~ (&) HIP,  (1V)

c(se, - 8 = (9 /min(u(s)P, ..., u(s)P) . (V)

where s=s,U...us, is the group controlled by the
manager, W(sy), ..., L(sk),1(s) arecomplexitiesof cor-

responding groups, o, >0 aresome positivereal num-
bers (parameters of the function). Functions (1)-(V)
depend on complexities (“work content) of employ-
ees of the “ section” controlled by the manager immedi-
ately. In different firms section may be controlled us-
ing different mechanisms. Thus, interaction between
the manager and his or her immediate subordinates (in-
side the section) may be organized in many ways. Be-
low we interpret functions (I1)-(V) as manager’s cost
for different ways of interaction inside the section. In
different papers many such ways are considered quali-

sectiona

narrowing ‘éx

group-monotonic

Fig 7. Interrelationship between classes of group-monotonic, narrowing and widening cost functions
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tatively without mathematical modeling (see, for in-
stance, Davies, Smith and Twigger, 1991; Peters, 1987,
Jago and VVroom, 1975). We attempt to describe it math-
ematically.

Suppose among immediate subordinates there exists
a“semi-leader” that copes with his or her tasks com-
pletely even with no superiors control. Function (1)
may correspond with this way of interaction. Man-
ager’s cost () depends on complexities of groups
controlled by all immediate subordinates except the
semi-leader. We mean that the immediate subordinate
with maximal complexity is a semi-leader.

Suppose there does not exist a “leader”. Thus, the
manager spends some efforts to control each of his
or her immediate subordinates. Manager’s cost may
depend on complexities of al groups controlled by
immediate subordinates. Function (11) may correspond
with this way of interaction.

Suppose among immediate subordinates there exists
a “leader” that helps to solve problems of other
immediate subordinates (for example, using his or her
experience or authority). Therefore, the cost of im-
mediate superior of the leader decreases. Function (111)
may correspond with this way of interaction. Man-
ager’s cost (I11) depends on complexity of the whole
group controlled by the manager and complexity of
the group controlled by the leader, which is imme-
diately subordinated to the manager. The greater is
complexity of the leader, the greater is his or her
importance among other immediate subordinates and
the less is the cost of immediate superior.

Function (1V) corresponds with cost of individual
interactions between the manager and all his or her
immediate subordinates. The cost depends on differ-
ences between complexity of the group controlled by
the manager and complexities of groups controlled
by immediate subordinates3’.

Suppose, among immediate subordinates there exists
an employee, that controls the group with small com-
plexity. This employee may have little qualification.
Low-qualified immediate subordinate may increase
manager’s cost. To control this subordinate the man-
ager may spend much effort. So, manager’s cost may

31 Consider amanager mthat controls group s,,(m). In process of
individual interaction with his or her immediate subordinate
m, the manager m may inform m, about the part of the group
§,(m), which is not controlled by m,. The volume of thisinfor-
mation may depend on difference of complexities M (s,(m))
and M (s,(m,)). Manager’s cost (IV) depends on the sum of
such volumes of information for all immediate subordinates.

90

increase because he or she is diverted from solving
more complex problems (just such problems must be
solved by this manager). Function (V) may correspond
with this way of interaction. Manager’s cost (V)
depends on complexity of the whole group control-
led by the manager and complexity of the group
controlled by the low-qualified employee, that is
immediately subordinated to the manager. The less
isthe minimal qualification of subordinated employees
the greater is the cost of immediate superior.

Let us solve optimal hierarchy problem for functions
(-(V). Obviously functions (1) and (l1) are group-
monotonic and functions (111), (1V) and (V) are not
group-monotonic. Let us examine narrowing and
widening conditions. Below we use the following
inequalities (particular cases of the Minkovski ine-
quality, see, for instance, Hardy, Littlewood and Polya,
1934):

(g +..+x)7 25 +...+x] for any

% 20,...,x 20and y=>1, (8)
(g +-+x)7 < +..+x] for any

% 20,...,x 20 and y<1. 9

Proposition 2. Function (l) iswidening for p<1 and
narrowing for B=1.

Proposition 2 allows to obtain optimal hierarchy for
function (I). If p<1 then two-tier hierarchy is opti-
mal (see Theorem 3). If B=1 then 2-tree with min-
imal cost is optimal (see corollary from Theorems 1
and 2). Fig 8 a illustrates optimal hierarchies for
function ().

Proposition 3. Function (I1) iswidening for B<1,is
widening on non-overlapping groups for B>1 and
a=1.

Thus, if B<1 or B>1 and ¢ >1 then for function (I1)
two-tier hierarchy is optimal (see Theorem 3 and
corollary). Fig 8 b illustrates optimal hierarchies for
function (I1). In the region B>1 and o<1 function
(1) is neither widening, nor narrowing even on non-
overlapping groups (Mishin, 2005). Therefore, for this
region Theorems 2 and 3 can not help to obtain op-
timal hierarchy. However, function (Il) is group-
monotonic. Thus a tree with minimal cost is optimal
(see Theorem 1).

Proposition 4. Function (I11) is narrowing for B>1.
Proposition 5. Function (IV) is narrowing for B>1.

Propositions 4 and 5 allow to obtain optimal hierar-
chy for functions (I11), (V) and B=1. In this case
2-hierarchy with minimal cost is optimal (see Theo-
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Fig 8. Forms of optimal hierarchy for function (I) (Fig a) and function (II) (Fig b)

rem 2).32 For B<1 we can find the tree with mini-
mal cost using algorithms. But this tree may be non-
optimal because functions (III) and (IV) are not group-
monotonic. By now methods to solve optimal
hierarchy problem for functions (III), (IV) and <1
are unknown.

Widening and narrowing functions imply optimality
of two extreme hierarchies: two-tier hierarchy and
2-hierarchy. Usually in real firms there are some “in-
termediate” hierarchies with span of control
2 < r < 40 . Therefore, to model many real firms we
have to examine neither widening nor narrowing cost
functions. Thus, it is important to solve optimal hi-
erarchy problem for this case. Below we describe a
method of searching out the tree with minimal cost.
If the cost function is group-monotonic then this tree
is optimal (see Theorem 1). For other functions this
is the best tree.

Optimal hierarchy problem is discrete optimization
problem. Therefore, it is difficult to solve it analyt-
ically. One possible way of solution is to consider
corresponding continuous problem with continuum set
of workers. The exploration of continuous problem
of searching out the minimal cost tree for sectional
cost functions was pioneered by Goubko (2002). In
some cases after the continuous problem is solved we
can prove that corresponding tree minimizes cost for
the original discrete problem.

Suppose we have to obtain minimal cost tree and cost
function c(s,, ..., s,) depends only on complexities

32" Mishin and Voronin (2003) obtain 2-hierarchy with minimal
cost for (Ill) and S >1.

of groups s, ..., 5,. Thus, the cost function is given
by c(u(sy),....u(s)) (see, for example, functions (I)-
(V))*3. Consider only homogeneous cost functions sat-
isfying the following condition. For any y>0 the

equality c(yu(sy), ... yu(sg)) = @(n)e(ulsy), ., sk )
holds, where o(-) is some continuously increasing
function. It can be proven (Goubko, 2002) that
o(y)=y", where y is homogeneity coefficient. If a cost
function is homogeneous, then scale of complexity
is of no importance. If we multiply all workers’ com-
plexities by the same multiplier y, then costs of all
hierarchies are multiplied by j". Therefore, scale of
complexity does not affect on optimality of hierar-
chies. Let us define continuous problem corresponding
with the discrete problem.

Let x=p(w)+...+n(w,) be total complexity of work-
ers in the discrete problem. Suppose in the continu-
ous problem the set of workers equals to the segment
N = [0,;x]. An individual worker is a point of this
segment. The top manager m controls all segment N
(all workers). The segment is divided into parts among
managers m,,..., m, immediately subordinated to the
top manager. Each of the managers m,,..., m, con-
trols some part of the segment N. Thus, the segment
N is divided into smaller segments with lengths
X, ..., x>0 controlled by managers m,,..., m, cor-
respondingly, x,+...+x, = x. The segment with length
x; controlled by the manager m;, is divided into smaller
segments controlled by his or her immediate subor-
dinates, 1< <k . These segments are divided again,

33 For any tree the groups s,, ..., s, are non-overlapping. So,
pisp ... Usg) =plsy) +...+1(s;) and we may suppose

that functions (I)-(V) depend only on H(s7), ..., L(S) ) .
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etc. The tree infinitely “grows”. In the tree each
manager corresponds with a segment. The length of
the segment equals to complexity of the group sub-
ordinated to the manager. If manager’s immediate
subordinates control segments with lengths x,, ..., X,
then manager’s cost equals c(x, ..., X,). Cost of atree
equals to total cost of all managers in the tree. It is
necessary to obtain infinite tree with minimal cost.

Goubko (2002) proves that for any homogeneous cost
function there exists self-similarly tree H with min-
imal cost. In H each segment is divided in the same
proportiony,, ..., ¥,>0 regardless of hierarchical tier,
y, +...+Yy,=1. The top piece of self-similarly tree is
shown in Fig 9. Controlled segments are shown in-
stead of managers. Immediate subordinates m,,...,m,
of the manager m control segments with lengths
Y%, ..., Y, X. Therefore, manager’s m cost equals
X'c(yy,..., y,)- Total cost of managersm,, ..., m _equals
Xie(yy, - Yy +...+y)). Expression in the brack-
ets are squares for the managers of the next tier,
cubes — for the manager of the next tier, etc. For y>1
such expressions are geometric series with multipli-
er y/+...+yl <1 (this inequality follows from ine-
quality (8) because y,+...+y, = 1). Thus, the cost of
self-similarly tree H equals to the sum of infinitely
decreasing geometric series:

c(H)=x"c(yp,.. i) (A~ Ziggy) - (10)

One of such trees minimizes cost. So, it is enough
to find k>2 and proportion y,,...,y, minimizing
expression (10). Corresponding tree is the desired
infinite tree with minimal cost.

Let us obtain the tree with minimal cost for function
(V). In any tree immediate subordinates of common
manager control non-overlapping groups (segments).
For any non-overlapping groups s,,...,s, equality
W u...us) =u(s)+...+u(sc) holds. Therefore,
function (V) is given by:

cu(sr),-- (s = s+ 4 (11)
u(s))* Fmin(u(spP ... u(s)P)

su(m)=N=[0;1]

Si(my)=[0;y4] (M)=(yy1ty2]

Expression (11) implies that function (V) is homo-
geneous. Homogeneity coefficient y equals a—.
Thus, we can minimize the cost (10) and obtain in-
finite tree with minimal cost.

Proposition 6. Let r, denote one of two integer num-
bers closest to the value r =((0—1)/B)Y*+-D. For
continuous problem with cost function (V) and o—3>1
symmetric r.-tree minimizes cost. In this tree any
manager has exactly r, immediate subordinates con-
trolling groups with equal complexity.

In the proof of Proposition 6 we show that for func-
tion (V) valuesy, =...= y, = Ik minimize expression
(10). So, symmetric tree minimizes cost. Thus, it is
enough to find k minimizing expression (10). The
minimum point r, = ((a—1)/B)Y#-Y may be non-in-
teger value. Therefore, r, is maximal integer less than
or equal to ry, or r, is minimal integer greater than
or equal to r, (to define r, it is enough to substitute
these two values in expressions (10) and (11)).

For function (V) with o3 >1 Proposition 6 solves
the continuous problem. Consider corresponding dis-
crete problem with number of workers n=r,) (nis
some power of r,) and the same workers complex-
ities u(wy) =...=u(w,) =1/n. In this case top j tiers
of the infinite symmetric r,-tree are just discrete tree
controlling workers w,,...,w, (these workers corre-
spond with the tier j+1). And cost of this part of the
infinite tree equals to cost of discrete tree. Therefore,
for n=r,) and workers with the same complexity sym-
metric r,-tree minimizes cost for the discrete prob-
lem3*. Thus, in this case we solve the discrete prob-
lem using continuous approximation method.

In Fig 10 the line B = a1 is shown. The region be-
low this line is divided into regions with the same
r.. In each of these regions optimal span of control
does not change. In the top right region symmetric
2-tree minimizes cost. In the region below symmet-
ric 3-tree minimizes cost. In the next region symmetric

34 Otherwise we can reduce the cost of the infinite tree using the
discrete tree with less cost to construct top j tiers of the infinite
tree.

S(m)=(yr+...+ Vs 1]

Fig 9. The top piece of self-similarly tree with proportion y,,...,y, and = 1
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4-tree minimizes cogt, etc. If parameters tend to the
point (1;0) then r, grows infinitely (for r,<10 in the
figure regions are denoted by numbers). If o increases
then in Fig 10 curves exponentially decrease. In
Fig 10, thus, 2-tree and 3-tree are shown. In these trees
the group controlled by a manager is “divided” into
subgroups with the same complexity among manag-
er’s subordinates. Trees for more r, may be shown
similarly.

Parameter B may be interpreted as degree of unfa-
vorable influence of little qualification. If § tends to
zero then we can subordinate low-qualified employees
(controlling groups with low complexity) to the
manager with no his or her cost sufficiently increase
(see expression (11)). Therefore, if B tends to zero
then optimal span of control r, tends to +e . Thus,
for sufficiently small  two-tier hierarchy with sin-
gle manager minimizes cost (if B = O then function
(V) iswidening and two-tier hierarchy is optimal for
any number of workers).

There exists the limit of the value r, (see Proposi-
tion 6) by parameters tending to the critical line § =
o—1. Thislimit equals eP. So, parameter regions with
fixed r, “reach” the critical line. For special cost
function Qian (1994) also considers the problem of
searching out the minimal cost tree. If real number
of immediate subordinates are possible, then Qian
(1994) proves that optimal span of control equals e
(each manager has e immediate subordinates). This
result coincides with the result for function (V) with
ao=2adfpf=1 (Iimrozel/Bze).

Fig 10 shows that for any r > 2 there exists such
region of parameters o and § that symmetric r-tree
has minimal cost. In many real firms span of control
ranges from several immediate subordinates to hun-
dreds immediate subordinates (Mintzberg, 1979). The

values 2 «r <4+ May be interesting to model such
firms.

5. Concluding remarks

Further development of the methods of the optimal
hierarchy search for sectional cost functions seems
perspective, among the following other general direc-
tions of future research.

1. Mechanism design. It is important to construct
control mechanisms that minimize total wage of
employees, which equals to the cost of the optimal
hierarchy (this is minimal possible cost). Mishin
(2004) constructs such mechanism in a complete
information framework. For the case of incomplete
information it is necessary to take the “worst case”
into consideration. For example, it may be necessary
to compensate maximal total cost of all managers,
which depends on information available for some
metacenter, for instance, the owner of the firm. But
iN some cases excess incentives provide stability with
respect to cost increase (Mishin (2004)). If manag-
ers’ cost increases, then a manager can restructure the
subordinated part of the hierarchy with no assistance
(at the expense of manager’s own resources). It al-
lows to “adapt” the firm to the cost modifications.

2. Dynamical models of the optimal hierarchy. Pa-
rameters of the cost function, the number of work-
ers, certain workers, interaction schemes can change
with time. Therefore, the initially optimal hierarchy
can later become non-optimal. However, the recon-
struction of the hierarchy is associated with large cost.
So, in dynamical models one has to compromise the
total cost of all managers and the reconstruction cost.
Mishin and Voronin (2003) introduce a metric on the
set of hierarchies. This metric is one of possible ways

0.6

0.4+

0.2

0.0 L |

1.0 1.2

Fig 10. Minimal cost trees for function (V)
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to define mathematically the reconstruction cost. The
metric allows to model the restructuring effects nu-
merically (Mishin and Voronin, 2002a, 2003). Ana-
lytical methods for solving the dynamical problem of
the optimal hierarchy are unknown so far.
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Appendix A. Proofs

Proof of Lemma 1. v is subordinated to m. So, any
worker we s, (v) is subordinated to m (we s, (m))
because the path from w to v can be extended up to
the path from w to m . Therefore, s, (v) sy (m).
Consider we s, (m) . The path from w to m contains
the node v, for some 1< j <k as(v;, m),...,(v,, m) are
the only edges incoming to m. So, we sy (v;) and
Sy (M) = sy (V) w. usy (V) -

Moreover, Sy (Vj) = sy (M) asv. is subordinated to m
for each 1<j<k. Thus, the equality
sy (M) =sy () uU...usy(v) holds. B

Proof of Lemma 2. Consider a tree H. Assume
sy () Nsy (v,) = for some manager m and two of
his or her immediate subordinates v, and v,. Any
worker we s, (v;)Nsy (v,) is subordinated to the
employees v, and v,. So, there are two different paths
from w to m (the first path contains the node v, and
the second path contains the node v,). These paths
diverge at some node ve N UM . Thus, the employ-
ee v has more than one immediate superior. It con-
tradicts Definition 2. Thus, in the tree H any man-
ager’s immediate subordinates control non-overlapping
groups of workers. Bl

Proof of Proposition 1: Consider an optimal hier-
archy He Q(N). Let two employees v, and v, con-
trol the same group s, (v;) = sy (v,) . Acyclicity of the
hierarchy implies that the employee v, does not control
the employee v, or vice versa. Suppose v, does not
control v,. Then consider the immediate superior m;
of the employee v.,. If v, isimmediately subordinat-
ed to m, then the edge (v,, m,) can be removed with
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no hierarchy cost increase (see inequality (3)). If v,
is not immediately subordinated to m, then the edge
(v,,m,) can be replaced to the edge (v,, m;). The equal-
ity sy (V) =sy(v,) implies that the cost of the man-
ager m; does not change. So, the cost of total hier-
archy also does not change. Thus, in both cases the
edge (v,, m;) can be removed. Similarly, we can re-
move all edges outcoming from v,. After that the
employee v, has no superiors and the employee v, can
be removed with no hierarchy cost increase®. If in
the obtained hierarchy some employees control the
same group then we can repeat the removal described
above. Finally we obtain the optimal hierarchy H-’
with employees controlling differing groups. Thus,

condition (i) holds for H”.

If some manager m, in the hierarchy H’ has no su-
periors and controls the group s (m,) # N then this
manager can be removed with no hierarchy cost in-
crease. We can repeat such removal. As a result, we

obtain the optimal hierarchy H”. In H” any man-
ager without superiors controls the group N. Defini-
tion 1 and condition (i)%® imply that there is the sin-

gle such manager min the hierarchy H”.3" At least
one edge outcomes from any node v#m in the hi-

erarchy H”. Acyclicity implies that we can construct
the path from v to m. So, al employees are subordi-
nated to m. Thus, conditions (i) and (ii) hold for the
optimal hierarchy H”.

Let the employees v, and v, be immediately subor-
dinated to the common manager m, in the hierarchy
H” and the employee v, be subordinated to the
employee v,. Then s;.(v3) < sy-(v,) (See Lemma 1).
Inequality (3) implies that the edge (v,;, m;) can be
removed with no hierarchy cost increase. After remov-
al the employee v, has at least one immediate supe-
rior because v, is subordinated to v,. We can repeat
such removal. As aresult, we abtain the optimal hi-
erarchy H" in which condition (iii) holds. The mod-
ifications described above do not change groups
controlled by the managers. The manager mis the only
manager without superiors. Thus, conditions (i), (ii)
and (iii) hold for the optimal hierarchy H". B

Proof of Theorem 1. Proposition 1 implies that there
exists an optimal hierarchy H=(NuUM,E)e Q(N),

35 Definition 1 is fulfilled because the maximal group N is con-
trolled by some manager (if v, controls the group N in the hier-
archy H then v, controls this group too).

36 We have removed some managers without violation of condi-
tion (i).

37 We cannot remove this manager because in this case Definition
lisviolated and the graph is not a hierarchy controlling the set
of workers N.
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which satisfies conditions (i)-(iii). If each of the
employees except the top manager has exactly one
immediate superior then H is an optimal tree (see
Definition 2). Otherwise there exists an employee
ve NUM Wwith two or more immediate superiors. If
there are several such employees then let us consid-
er the employee on the highest tier. So, each of the
superiors of the employee v except the top manager
has exactly one immediate superior.

Let v, and u, be some different immediate superiors
of the employee v. Condition (ii) of Proposition 1
implies that the employees v, and u, are subordinated
to the top manager m. Thus, there exists the path from
v, to mand the path from u, to m.3 Therefore, there
exist two different paths from v to m. These paths
diverge in common node v and converge in other node
u (in m or one of subordinates of the manager m).
Letv-v,—.—-V, andv-u,—..— U, bethe parts
of these paths from v to u. These parts have common
first node v, common last node Vv, =U,, =u and dif-
ferent intermediate nodes. It follows from choice of
the node v that each of the managersv,,...,V,, has
exactly one immediate superior — the next node in the
path. This is true for the managers u,...,U, , too.
Corresponding fragment of the hierarchy is shown in
Fig 11.

Initial hierarchy H satisfies conditions (i)-(iii) of
Proposition 1. Below we describe the reconstruction
that does not increase the cost of the hierarchy. Af-
ter each reconstruction obtained hierarchy will be
denoted H just asthe initial hierarchy. All reconstruct-
ed hierarchies satisfy condition (ii) of Proposition 1.
So, al employees are subordinated to the top man-
ager m. Therefore, different paths from v converge
and the fragment of the reconstructed hierarchy looks

Fig 11. Optimal hierarchy reconstruction with
group-monotonic cost function

38 One of these paths can contain one node if v, = mor u, = m.

like the fragment in Fig 11. There are two possible
options of hierarchy H reconstruction (Fig 11 explains
these options).

a) Suppose s,,(V)=s,(v,).* So, the employees v and
v, control the same group of workers. Let us remove
the manager v,. If v is not immediately subordinat-
ed to the manager v, then let us immediately subor-
dinate the employee v to the manager v, instead of
the manager v,. After removal the groups controlled
by the managers are not modified. So, only the cost
of the manager v, can be modified. This cost does
not increase because of group-monotony. Thus, the
obtained hierarchy is optimal.

After v, removal some employees may have no su-
periors. Such employee is not a worker because all
workers are subordinated to the top manager. So, after
v, removal in addition to the top manager some other
managers may have no superiors. Such managers can
be removed. The aobtained graph is an optimal hier-
archy. After removal new managers may have no
superiors. These managers can be removed too, etc.
Finiteness of M implies that we obtain the optimal
hierarchy with only top manager having no superi-
ors. Thus, condition (ii) of Proposition 1 holds.

b) Suppose s,(V) = s,(v,). So, the manager v, controls
a wider group than the employee v: s, (V) c s, (V).
Thus, v, has at least two immediate subordinates. Let
us remove the edge (v,v,). After removal the manager
v, still has subordinates. The group s, = s,,(v,) con-
trolled by the manager v, can be changed to the new
group s, if some workers from the group s,(v) are
not controlled by the manager v, after removal. How-
ever, v, controls workers from the group s, which are
not part of the group s,(v). Thus, scs,
(s;\s) c sy (V). There is exactly one edge outgoing
from the node v,. The modification of the group s, =
s,,(v;) can cause the modification of the group s,=
s,(v,) controlled by the manager v,. Let s, be the
modified group. As described above only workers
from s,(v) can be removed from the group s,. So, only
such workers can be removed from the group s,. Thus,
s,cs,, (s\s)csy(v). Similarly for each
i =3,n -1 the group s=s,(V;) controlled by the man-
ager v, changes to the group s, scs,
(s\s)csy(v).

Consider the group sy (V) . This group equals to the
union of the groups controlled by all the immediate

39 In some cases reconstructed hierarchies do not satisfy condi-
tion (i) of Proposition 1. So, the equality s,(v) = s,(v;) can
hold.
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subordinates of the manager Vv, (see Lemma 1).
Among these groups only the group s, ; controlled
by the manager V,_, can be changed after the edge
(v,v;) removal®. It follows from (S,—1\s,-1) < Sy (V)
that only workers from the group s,(v) can be removed
from the group Sy -1. However, these workers are the
part of the group Sy (Un,—1). Thus, the group
SH (Vny) is not changed. Therefore, the groups con-
trolled by the superiors of the manager Vy are not
changed too.

So, removal of the edge (v,v;) can change the groups
SH (V1),-++SH (V1) only. Thus, the top manager till
controls all the workers, each manager has subordi-
nates and the obtained graph is acyclic (edge removal
cannot cause cycles). Therefore, the obtained graph
satisfies al conditions of Definition 1. We obtain the
hierarchy. Moreover, each employee except the top
manager has at least one immediate superior. All
employees are subordinated to the top manager be-
cause of acyclicity. So, the hierarchy satisfies con-
dition (ii) of Proposition 1.

The number of employees immediately subordinat-
ed to the manager v, decreases by one. The number
of employees subordinated to each of the managers
V,,...,Vy, does not change. However, the group con-
trolled by immediate subordinate of the manager v,
can be reduced, i=2,n . So, costs of managers
V;,...,V, do not increase because of group-monoto-
ny. Thus, the obtained hierarchy is optimal.

Both in the option &) and in the option b) we obtain
the optimal hierarchy satisfying condition (ii) of
Proposition 1. Therefore, we can repeat the reconstruc-
tion a) or b) while there is an employee with two or
more immediate superiors. After each reconstruction
the number of edges decreases at least by one. Fi-
niteness of the edge set E implies that the reconstruc-
tions come to an end after finite number of steps. In
the obtained optimal hierarchy H* only top manager
has no superiors. Each of the other employees in H
has exactly one immediate superior. So, H* is an
optimal tree. B

Proof of Theorem 2. Consider an optimal hierarchy
H e Q(N) . Let k be the maximal number of employ-
ees immediately subordinated to common manager.
If k =2 then H is the required optimal 2-hierarchy.
If k>2 then consider a manager m with k immediately
subordinated employees v,,...,v,.

40 Among manager's Vy, immediatesubordinatesonly V, _1 con-
trols the managers Vi,---Vp -2 because each of them has only
one immediate superior.
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Let s,=s,(v,),...,5=S4(V,) be the groups controlled by
the employees v,,...,v,. As the cost function is nar-
rowing there exist a number of employees 1< j <k
and permutation (i,,...,i,) satisfying inequality (6). Let
us reconstruct the hierarchy H: hire new manager m,
and immediately subordinate the employees Vi, ---: Vi,
to m, instead of m, immediately subordinate m, to m
(see the example in Fig. 6). Inequality (6) implies that
the cost of the hierarchy does not increase. Thus, the
obtained hierarchy is optimal. The manager m, has
j<k immediate subordinates. The manager m has
k—j+1<k immediate subordinates. So, in the ob-
tained hierarchy the number of managers with k
immediate subordinates decreases by one. We can
repeat such reconstruction while there exists the
manager with k immediate subordinates. As a result,
we obtain the optimal hierarchy with maximal number
k'<k of employees immediately subordinated to
common manager. If k'> 2 then we can repeat recon-
structions. As a result we obtain the optimal 2-hier-
archy.

Proof of corollary (from Theorems 1 and 2). Theo-
rem 1 implies that there exists an optimal tree because
the cost function is group-monotonic. In the proof of
Theorem 2 we can consider this tree as initial opti-
mal hierarchy H. Lemma 2 implies that immediate
subordinates of any manager control non-overlapping
groups of workers. Therefore, there are no overlap-
ping groups among the groups s,,...,s, in the proof
of Theorem 2. So, we can reconstruct the hierarchy
because the cost function is narrowing on non-over-
lapping groups. After the reconstruction we obtain
some tree (new manager and each of other employ-
ees except the top manager have exactly one imme-
diate superior). After all reconstructions we obtain the
optimal 2-tree. &

Proof of Theorem 3. Proposition 1 implies that there
exists an optimal hierarchy H e Q(N), which satis-
fies conditions (i)-(iii). According to condition (ii)
there exists a manager m controlling all other employ-
ees. If mis a single manager then H is the optimal
two-tier hierarchy. Otherwise there exists a manag-
er m, immediately subordinated to the manager m.
Let vy,....v, be all immediate subordinates of the
managers m,. Let s, = sH(vl),...,sJ = SH(vj) be the
groups controlled by the employees ViV As the
hierarchy H satisfies condition (i) of Proposition 1
each manager has at |east two immediate subordinates.
So, j >1 and the manager m has other immediate
subordinates besides m;. Let v, ,,...,v,, k>3 be all
such immediate subordinates. Let s, ; = §,(V,),-...§=
s,(v,) be the groups controlled by the employees

Vippree Ve
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Suppose the manager m, has some immediate supe-
riors m besides m. So, there exist two different paths
from m, to m: the first path contains only two nodes
m, and m, the second path contains the manager m'.
Besides m; the second path contains one of the em-
ployees VipgreaVi immediately subordinated to m. So,
this employee controls the manager m,. It contradicts
condition (iii) of Proposition 1. Therefore, top man-
ager mis the single immediate superior of the man-
ager m,.

Condition (iii) of Proposition 1 implies that there are
no immediate subordinates of the manager m among
the employees Vi, (otherwise immediate subor-
dinate m, controls other immediate subordinate). So,
there are no identical employeesamong v, ,,...,v, and
V,...,V.. Thus, the described fragment 01‘ the hierar-
chy looks like the fragment in Fig 6 b.

Inequality (7) holds for any groupss,,...,s,, k>3, any
number 1< j<k and any permutation (ij,...,i,) be-
cause the cost function is widening. If
(iys--0i)=(1,...,K) then inequality (7) is given by:

(St SK) S €S-, Sj) +
(S V... USj,Sji1nSK) (*)

Let us reconstruct the hierarchy: immediately subor-
dinate the employees VpeonV, o the manager m in-
stead of the manager m, and remove the manager m,.
Obtained fragment of the graph looks like the frag-
ment in Fig. 6 @). The manager m controls all work-
ers as before the recongtruction. So, the obtained graph
is a hierarchy. The groups controlled by other man-
agers do not change too. In the obtained hierarchy
the cost of the manger m (first member of the ine-
quality (*)) is less than or equal to costs of the man-
agers m and m, in the initia hierarchy (right-hand
member of inequality (*)). Thus, the obtained hier-
archy is optimal and satisfies conditions (i) and (ii)
of Proposition 1. But condition (iii) may be violat-
ed because some of the employees VpeonV, may be
subordinated to some of the employees v, ;,...,v,.
Suppose the employee V; is subordinated to the
employee Vv, , 1<j;<j, j+1<j,<k. Lemmal
leadsto s;, = sj, . Inequality (3) implies that “excess’
edge (vj,,m can be removed with no hierarchy cost
increase. After removal the employee v, is subor-
dinated to the top manager but not immediately

(through the employee V|, ). We can repeat such re-

moval. As a result, we obtain the optimal hierarchy
satisfying conditions (i), (ii) and (iii) of Proposition 1.

The obtained optimal hierarchy contains |ess managers

than the initial hierarchy because the manager m, has
been removed. We can repeat similarly reconstruc-
tions while there are two or more managers. As a
result, we obtain the optimal two-tier hierarchy with
the single manager m. W

Proof of corollary (from Theorems 1 and 3). Theo-
rem 1 implies that there exists an optimal tree because
the cost function is group-monotonic. In the proof of
Theorem 3 we can consider this tree as initial opti-
mal hierarchy H. Lemma 2 implies that immediate
subordinates of any manager control non-overlapping
groups of workers. Therefore, there are no overlap-
ping groups among the groups s,,...,s, in the proof
of Theorem 3. So, we can reconstruct the hierarchy
because the cost function is widening on non-over-
lapping groups. After the reconstruction we obtain
some tree. After all reconstructions we obtain the
optimal two-tier hierarchy. B

Proof of Proposition 2. Consider the groupss,,...,S,,
k>3. Let z and z, be the |eft-hand member and the
right-hand member of inegualities (6) and (7) (these
inequalities correspond with narrowing and widen-
ing cost functions). Suppose B <1. Let us prove
inequality (7) for any 1< j <k and any permutation
(iy,..si).  Inequality (7) is given by
c(sl,...,sk)SC(gl,...,sj)+c(silu...usij ’Sim""'sk)-
Let us define the following values: xlzu(sl)“,
xp=w(s;)”,  x'=max(x,, .., X), X= X+
S X YR mE )Y Y=
Ve =m(§, )% Y= MaX(Yp, g Yids Y = Vgt o
S=§,V...us, . Then the left-hand member and the
right-hand member of inequality (7) are given by:

71 = (X+ y—max(X, y’))B :

2, = (x=X)P + (W(9)* + y- max(y,u(9)*)P-
Inequality (9) and B<1 imply that the inequality

2, > (x+ y+u(s)* — X —max(y,u(s)))? holds. To prove
inequality (7) (z,>z) it is enough to prove:

X+y-max(X,y)<x+y+

w(s)* =X —max(y’,u(s)*)
This inequality is given by:
X +max(y',1(s)™) <p(s)* +max(x,y) - If vy <p(s)”
then the inequality is simplified: x"<max(x,y’) . So,
the inequality holds. If y >u(s)® then the inequali-
tyisgiven by X +y <u(s)* +max(x,y) . Theinequal-
ities y<max(x,y) and x <u(s)* hold because

S=§, V...us . Thus, inequality (7) holds. So, if B<1
then function (1) is widening.
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Suppose B=1. Let s, be the group with maximal
complexity: u(s,) = max(u(sy),..., u(s)) (otherwise we
can renumber the groups s,....,s,). Consider the groups

s;» S, (J=2) and the permutation (1,2,...,k). Let us
prove inequality (6) which is given by:
c(Sp,.. ) = C(8,S,) +C(SUSy, S5, ) - The  left-

hand member and the right-hand member of inequality

(6) are given by: 7= (u(s)” +...+h(%) )P and

2o =(S,) P + (W(s)* +...+u(s)™)P . Inequality (8)
and B>1 leadto z > z,. Thus, inequality (6) holds.
So, if p=1 then function (1) is narrowing. W

Proof of Proposition 3. Consider the groups s, ...,s,,
k>3. Let z and z, be the |eft-hand member and the
right-hand member of inequality (7). The inequality
corresponds with widening cost function. Let us prove
inequality (7) for any 1< j <k and any permutation
(PPN

c(sl,...,sk)SC(sil,...,Sj )+
C(SilU---USij ,3j+l,...,sik) :

Let us define the foIIowmg values. S=§, V. USi
x=p(s) "+ (s, y=ais;,)" s, )%
Then the left-hand member and the right-hand member
of inequality (7) are given by: z=(x+y)? and
=X+ (e)*+y)P. If p<1 then (9) leads to
7 <xP+yP <z,. Thus, inequality (7) holds. So, if
B<1 then function (I1) is widening.

If the groups s,,...,s, are non-overlapping then
u(s) = u($1)+ +u($ ) If o>1 then (8) leads to
w(s)* > p(s,)* +. +M(S )* =x. Thus, the inequality
2, > (x+ y)B =z (mequallty (7)) holds too. So, if B>1
and ¢ >1 then function (I1) is widening on non-over-
lapping groups. W

Proof of Proposition 4. Consider the groupss,,...,S,,
k>3. Let z and z, be the |eft-hand member and the
right-hand member of inequality (6) corresponding
with narrowing cost function. Let s, be the group with
maximal complexity: u(s;) = max(u(sy),...,u(s¢)) (oth-
erwise we can renumber the groups s,,...,s,). Con-
sider the groups s,, s, (j=2) and the permutation
(1,2,...,k). Let us prove inequality (6) which is giv-
Sk) 2 ¢(S1,S2) +C(SL U Sz, S350 ) -

Let us define the values x=p(su...us)%,
y=w(suUs)®, z=u(s)*. Then z<y<x. The left-
hand member and the right-hand member of inequality
(6) is given by z=(x/z-1)P,
2, = (y/z-1P +(x/y-1)P . Inequality (8) and p>1
imply that the inequality z, < (y/z-1+x/y-1)® holds.
Using this estimation we can prove inequality (6)
(z, < z) with the help of proving the inequality
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x/ z-1-yl z+1-x/y+1=0. Thisinequality is given by:

(xy+yz-y? —x2)/ yz=(x—y)(y-2)/ yz>0.

Thus, inequality (6) holds. So, if B>1 then function
(1) is narrowing. &

Proof of Proposition 5. Consider the groups s, ,...,S,,
k>3. Let z and z, be the |eft-hand member and the
right-hand member of inequality (6) corresponding
with narrowing cost function. Consider the groups s,
S, (1=2) and the permutation (1,2,...,K). Let us prove

inequality (6) which is given by
C(SpyrSk) 2 C(S1,S2) +C(S, U Sy, 350008 )
Let us define the values x=p(su..us)%,

y=(sus)® x=n(s)% ... % =p()* - The left-
hand member and the right-hand member of inequality

(6) are given by  z=(kx—x—..—x)",
2y =(2y— % — %o)P +((K—=Dx—y—Xg—...— % )P . Inequality
(8) and B=1 imply that the inequality

2, <((K-D)x+y-x —..—x)P holds. The right-hand
member is less than or equal to z, because y<x.
Thus, inequality (6) (z, <z) holds. So, if B=1 then
function (1V) is narrowing. B

Proof of Proposition 6. The equality y=o—f holds
for function (V). Let us subgtitute expression (11) ((V)
for non-overlapping groups) in expression (10). Then
the cost of infinite tree is given by:

XT(yp+...+ Y )*/

*
[in(y..... YA~ Syl ©
The numerator in the brackets equals 1 (y,+...+y,=1).
To minimize the expression it is enough to maximize
the denominator. It is obvious that the expression
min(y?,...,yf) reaches maximum when y,=...=y, =1/
k. With the help of the simplest mathematical anal-
ysis methods we can prove that for y>1 the expres-
sion (1- 2i=ﬂ y¥) reaches maximum when
y,=...=y, =k

Thus, the symmetric k-tree minimizes cost function
(V). In this tree each manager has exactly k imme-
diate subordinates. These subordinates control the
groups with the same complexity. So, we have to find
optimal k. Without the constant X' expression (*) with
y,=...=y, =1k is given by the function g(K):

E()=kB /fL—k/KY ): e /(kv—l _1):
" /(k(x—B—l _ 1)

Let us differentiate the function by k and ignore the
positive multiplier:
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(k)= (o~ Dk 2(kOPL 1) (o B2 B-2koL =
k=2 [(0‘ - 1)(ka_B_1 - 1)— (0-B- 1)k°“B‘1]=
KO—2 [Bkoc—[}—l _ (a _1)]

The sign of the derivative depends only on the sign
of the expression in the brackets. The derivative

equals to zero when k=r, = ((o—1)/ |3)1/(0C—B—1) If
k<r, then the derivative is negative (the cost decreas-
es) because of oo~ -1>0. If k>r, then the deriva-
tive is positive (the cost increases). Thus, r is min-
imal point. If ryis not an integer then one of the
nearest two integers is minimal point. W
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