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Abstract. Construction schedule simulation is an effective method to analyze the progress of concrete rolling construc-
tion and its simulation accuracy is an important indicator that project managers care about. However, existing roller
compacter concrete construction simulation research pays less attention to the impact of construction process changes
caused by compaction quality on simulation accuracy. Based on the real-time monitoring system of concrete rolling con-
struction, this paper establishes a simulation model of concrete rolling construction considering compaction quality. The
model firstly reconstructs the property parameters of roller compacted concrete using the improved generated adver-
sarial network, secondly, considering the nonlinear correlation characteristics of parameters affecting compaction quality,
a concrete compaction quality analysis model based on improving grey wolf optimized convolutional neural networks
(IGWO-CNN) was built. Finally, the intelligent analysis model of compaction quality was embedded into the simulation
model of concrete rolling construction. Based on real-time monitoring data, the simulation model was driven and the
simulation process was adjusted adaptively. Taking the construction of a roller compacted concrete dam in China as an
example, the validity and superiority of this model are proved.

Keywords: construction simulation, concrete rolling construction, real-time monitoring, compaction quality, improved generative adversarial networks,

improving grey wolf optimized convolutional neural networks.
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1. Introduction

Roller Compacted Concrete (RCC) is a specialized type of
concrete widely used in heavy construction, particularly for
large-scale infrastructure projects such as dams (Liu et al.,
2015a), roads (Aghaeipour & Madhkhan 2020), airports
(Zhang et al., 2022), and navigation-power junction pro-
ject (Zhang & Zeng, 2018). It is named for the construc-
tion method used, where the concrete is compacted using
rollers rather than being poured and vibrated like conven-
tional concrete. RCC has become a preferred material for
large infrastructure projects due to its durability, speed
of construction, and cost-efficiency. Roller compaction is
a crucial stage in the concrete construction process and
is one of the key factors in ensuring construction quality
and project schedule. Therefore, in RCC dam construction,
roller compaction is highly valued by project managers.
In order to achieve effective construction schedule
control, researchers have investigated many construction
simulation methods. Halpin (1977) proposed a discrete
event simulation method called CYCLONE for repetitive
projects. After that simulation methods like UM-CYCLONE

(loannou, 1990), MODSIM (Oloufa, 1993), STROBOSCOPE
(Martinez & loannou, 1994), Simphony (AbouRizk & Mo-
hammed, 2000), SDESA (Lu, 2003) have been proposed.
These methods bridge the gap between the real construc-
tion system and the abstract simulation model, facilitating
the wide use of construction simulation in today’s con-
struction management. In 2010, Dynamic-Data-Driven
Application Systems' comprehensive system architecture
and methodology (Celik et al., 2010) were proposed. For
look-ahead planning during field activities, a dynamic re-
al-time monitoring and simulation of heavy construction
operations (Song & Eldin, 2012) was offered. In order to
constantly improve the simulation model, an overarch-
ing tracking-technology-independent architecture (Vah-
datikhaki & Hammad, 2014) based on the incorporation
of new location tracking technologies was developed. In
tunnel case study, Zhang et al. (2014) adopted a Bayes-
ian technique to continuously update duration distribu-
tions of uncompleted construction activities based on on-
site data. Akhavian and Behzadan (2015) gathered real da-
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ta from construction equipment, and then utilized a ma-
chine learning technique for simulation. In 2016, a rockfill
dam construction simulation model (Du et al., 2016)
based on flow shop construction was presented. In or-
der to design snow removal projects while taking weather
and truck-related data gathered by real-time sensors in-
to consideration, Mohamed et al. (2017) suggested a da-
ta-driven simulation framework. In addition to schedule,
Ji and AbouRizk (2018) established a data-driven simula-
tion model to aid decision support systems in estimating
and controlling the costs of quality-induced rework in the
production of building products. As artificial intelligence
advances, many artificial intelligence algorithms are used
in simulation models, such as evolutionary method in-
spired by chaos theory (Shrestha & Behzadan, 2018), fuzzy
Bayesian update algorithm (Guan et al., 2018), Bayesian
field theory (Zhang et al.,, 2020), improved extreme gra-
dient boosting (XGBoost) approach (Lv et al., 2020), op-
timized hybrid-kernel RVM (Song et al., 2020), enhanced
semi-supervised ensemble machine learning approach
(Zhang et al., 2023).

These simulation models provide a good theoretical
basis for the simulation of concrete rolling construction.
Above all, discrete event simulation method is an impor-
tant means of analyzing the progress of concrete rolling
construction (Hu et al., 2019a). Concrete rolling construc-
tion simulation (Zhong et al,, 2015) is the key of construc-
tion management, which can avoid reworks and opera-
tion conflictions, improve the resource utilization rate and
save project time and cost. Wang et al. (1995) used sys-
tem simulation and a queue stochastic simulation network
to simulate roller compacted concrete dam construction.
Luo et al. (2009) proposed a petri net based simulation
method to analyze the interaction relationship between
the roller compacted concrete dam production, transpor-
tation and placement process. Zhao et al. (2013) studied
the roller compacted concrete pouring process system
and construction schedule optimization for the limited
resource conditions of roller compacted concrete dams.
Wang et al. (2018b) proposed an RCC dam construction
simulation approach that uses Bayesian updating method
and real-time monitoring technology to update the sim-
ulation model. Hu et al. (2019b) used the DPM model to
analyze the perception data, determines the probability
density distribution of the simulation parameters, and uses
the SUGS algorithm improved by permutation entropy to
quickly solve the DPM model under the real-time percep-
tion data stream, so as to realize the adaptive update of
the simulation parameters.

However, through a literature review, it was found that
most of the current articles on RCC dam construction sim-
ulation primarily focus on updating simulation parameters
and do not consider the impact of compaction quality on
the construction schedule of RCC dams. Compaction qual-
ity of roller compacted concrete, a significant index of roll-
ing process simulation model, has significant impact to
the construction simulation results. The reason is that it

can determine whether additional compaction of the sur-
face is needed and whether the simulation logic needs to
be adjusted. Therefore, the paper developed an algorithm
to more accurately assess the compaction quality, which
can not only finely analyze the construction quality of the
storehouse surface, but also improve the accuracy of the
schedule simulation.

Construction quality of rolling process is another con-
cern of project managers (Liu et al., 2015a; Zhong et al,,
2017). Many scholars have carried out research on the
quality control of different construction materials in the
rolling process, such as earth-rock material (Liu et al.,
2012) and asphalt (Hu et al., 2019a). As for compaction
quality of roller compacted concrete, based on the inte-
gration of global navigation satellite system (GNSS) tech-
nigues, network transmission technology and sensor tech-
nology, Liu et al. (2015b) proposed a real-time construc-
tion quality monitoring model for storehouse surfaces of
RCC dames, built a real-time construction quality monitor-
ing system. The digital monitoring of roller compaction
quality has realized the parameters of storehouse surface
roller compaction (rolling trajectory of roller compaction
machine, walking speed, number of roller compaction, ex-
citation force, etc.) all-weather and real-time monitoring.
At the same time, in order to realize the analysis of com-
paction quality, mathematical statistical methods and ar-
tificial intelligence methods have been successively ap-
plied to evaluating compaction quality. Statistical methods
mainly include linear regression, etc. Artificial intelligence
methods (Wang et al., 2018a; Hong et al., 2020) include
artificial neural network methods, support vector machine
methods, and deep learning-based methods, etc.

Compared with statistical methods, artificial intelli-
gence-based methods can effectively deal with non-lin-
ear relationships in data. In recent years, due to the out-
standing ability of deep learning algorithms to process
nonlinear mapping, they have gradually been used in the
field of prediction. Convolutional neural network (CNN) is
one of the most popular architectures in deep learning.
It shows great potential and innovative achievements in
solving regression problems, such as probabilistic wind
power forecasting (Wang et al., 2017), NIR calibration (Cui
& Fearn, 2018) and spatial prediction of groundwater po-
tential mapping (Panahi et al., 2020). Meanwhile, in order
to improve the ability of neural networks to solve prob-
lems in various fields, the application of evolutionary com-
puting to optimize neural networks has made great prog-
ress (Baldominos et al.,, 2020; Xu et al., 2022). In this paper,
an improved gray wolf optimization algorithm is used to
optimize a one-dimensional convolutional neural network
to improve its compaction quality prediction performance.

2. Research objective and contributions

Related research has achieved rich results in the construc-
tion simulation of roller compacted concrete and real-time
monitoring of the roller compacted construction process.
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However, the existing concrete rolling construction simula-
tion model does not consider the adjustment of the simu-
lation process brought about by the dynamic changes of
the rolling quality of the construction site. In the existing
simulation model of concrete rolling construction, the se-
quence of activity nodes consisting of unloading, paving,
rolling and quality inspection is statically fixed, and the
simulation process composed of process activity nodes in
a fixed sequence reflects the ideal process. In fact, in ac-
tual concrete rolling construction, supplementary rolling
activity will happen according to the construction quality,
which means that the actual sequence of activities is dy-
namically adjusted.

In this paper, aiming at solving above problems, a sim-
ulation method for roller compacted concrete placement
process is proposed. Firstly, in order to enhance the au-
thenticity of the simulation model and improve the simu-
lation accuracy, this paper is based on the concrete rolling
construction digital monitoring system (Liu et al.,, 2015b)
to obtain rolling parameters and concrete property pa-
rameters, and at the same time use the improved genera-
tive adversarial networks (IGAN) to reconstruct the con-
crete property monitoring data to solve the problem of
the small number of samples caused by the long collection
time interval. The main improvement idea of this paper is
firstly using Long Short Term Memory (LSTM) neurons in
the Generator. After each LSTM layer, a batch normaliza-
tion layer is added to improve the network training speed.
Secondly, to achieve accurate analysis of compaction qual-
ity, this paper use improving grey wolf optimized convo-
lutional neural networks establish an intelligent analysis
model of compaction degree, and obtain a high-precision
compaction quality analysis model through the training of

on-site measured compaction data, so as to realize pre-
cise analysis of the degree of compaction at any position
of the storehouse surface during the simulation process.
Finally, the quality intelligent analysis model is embedded
in the concrete rolling construction simulation model, and
the simulation process is updated in real time based on
the quality analysis results.

3. Research framework

The overall research framework of simulation model of
roller compacted concrete construction is shown in Fig-
ure 1.

4. Methodology of construction simulation
model considering quality factors

The mathematical model of concrete rolling construction
simulation is composed of four parts: objective function,
state transition equation, simulation parameters, simula-
tion constraints.

(1) Objective function:
T = f(Qglc,). M., M,,S,C). 1

In Egn (1), T is the storehouse’'s simulation duration,
f() is simulation solution function, Qg(c,r) is compaction
quality, meanwhile, ¢ is concrete property parameters, r is
rolling parameters. M, is the set of construction technol-
ogy, including horizontal layer construction and slopping
layer construction. M, is the set of compaction quality
analysis method. S is the set of construction monitoring
parameter. C is the construction condition.

Figure 1. Research framework
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(2) State transition equation:

Tisiy = Tisiony A
Ty =Ty +AL
Tty =Ty +AL

H(S,i) = H(S,i=1)+n,(At) xh,
Ny = Nyioqy +n (At '
N(r,i) = N(,’H) +n,(At)

X; = X;_q+V,_AtcosB,_,
Yi=Yiq+Vv_4Atsing,_,

@)

During the simulation, Eqn (2) specifies the state trans-
fer function. T ¢ ;) represents the storehouse surface con-
struction duration at simulation moment t;, T(L,i) repre-
sents the layer construction duration at simulation mo-
ment ¢, T, , represents the rolling construction duration
at simulation moment t; At is the simulation clock step
length, H(S,i) represents the storehouse surface height
at simulation moment t;, n;(At) is the number of layers
poured in At, h; is layer thickness, N, ; indicates the se-
rial number of layer, N, is the serial number of rolling
band, n,(At) is the number of rolling band poured in At,
x; and y; represent the coordinates of the roller at simula-
tion moment t; v;_q is the roller speed at simulation mo-
ment t,_1, 6;_1 is the roller instantaneous deflection angle

at simulation moment t,_4.
(3) Simulation parameters:
M, =M, (P)uM,(X);

M, =M, (R)uM,(E);

S =[v.8, NN, Ve Ve :

Ny,

vc!

C=[AN].

Equation (3) gives the set of simulation parameters. v;.¢
and vy, are rolling speed boundary. AV,.. and AV, rep-
resent the change value of vc and air content respective-
ly. M_(P) is horizontal layer construction, M_(X) slopping
layer construction. Mq(R) is concrete property parame-
ters reconstruction method, Mq(E) is construction qual-
ity evaluation method. v is the roller speed, 6 is the roller
instantaneous deflection angle, N; represents the number
of static rolling passes, N, represents the number of vibra-
tion rolling passes, V,. is defined as the value of VC, V.
is defined as the value of air content. A is the construc-
tion storehouse surface boundary, N is the number of con-
struction machinery.

(4) Simulation constraints:
Qg (s) C Qg (base);

A<AL NN @
qs <qp:

T(LJ)-T,(Lj-1)<T,

Equation (4) is the simulation constraints. Q(s) is the
compaction quality calculated in simulation, Qg(base)
is Construction specification requirements according to
“Construction Specifications for Hydraulic RCC (DL/T5112-
2009)" (National Energy Administration of People’s Repub-
lic of China, 2009). And it is also required that the store-
house surface boundary A in the construction simulation
should not exceed the storehouse surface range A. which
was inputted before the simulation begins, the number
of construction machinery N cannot exceed the specified
number of construction machinery N.. g is the standard
ratio of the rolling area in layer. gy is layer compaction
quality standard ratio in simulation. T(L, j—1) is the start
time of layer j - 1, T(L, j) the rolling activity end time of
layer j. T, denotes the allowed construction time interval
between adjacent layers.

4.1. Simulation parameters determination

4.1.1. Rolling parameters

(1) Calculation of rolling passes

As shown in the Figure 2, the concrete rolling con-
struction is a random walking process of the roller under
the combined action of rolling speed and deflection angle.

The calculation diagram of the number of rolling pass-
es under different vibration conditions is shown in the Fig-
ure 3.

The roller width is assumed to be L cm, and the store-
house surface is gridded to calculate the rolling passes un-
der different vibration states. At the same time, the num-
ber and coordinates of each grid are obtained. Let the
point coordinates of the roller at simulation moment t,_;

Figure 2. Diagram of rolling process

Figure 3. Rolling passes calculation diagram
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and t; be R,_,(x;_y, ¥;_4) and R;(x;, y;) respectively. Deter-
mine the rolling area A, within the time interval At, A, is
a quadrilateral region where line R,_,R; extends L/2 in the
vertical direction of the roller trajectory line. Let the coor-
dinates of the four vertices of A, be P,(x,, ¥ ) Pg(Xg. ¥p),
Pe(xc:1 Yc) Po(Xp, yp). The Bresenham algorithm was used
for determining grid-based rolling areas due to its efficien-
cy in rasterizing linear paths with integer arithmetic. Spe-
cifically, the algorithm is employed to map the roller's path
onto a discrete grid by identifying the sequence of grid
cells traversed during each compaction pass. This ensures
efficient rasterization of the roller's coverage area while
minimizing computational complexity due to the integer-
based calculations inherent in the Bresenham approach.
According to Bresenham Algorithm (Flangan, 1990), the
coordinate relationship between points ABCD and points
Ri_1(X;_1:¥i_1): Ri(x;, y;) satisfies the following formula:

L

\/(XFFXA)ZJF(YM*YA)Z =5
Xia=Xa | | Xia =X -1
Yiea=Yal Vi = Vi

L
YO = X+ (¥, — yg =5
XX | | X T X g )
Yi=Ye| [Yia—Yi

L
YO =X P Ay, =y P =5
Xi = Xe | | Xia ™ X — 1
Yi=Yc| Yia=Yi

\/(X,',1*XD)2+(,V[,1*YD)2 Zéi
{(Xi—1 _XD)/(yi—1 _yD>H<Xi—1 _Xi)/(yi—1 _yi)] =-1

According to the divided grid, determine which grid
center is in this area A, if the center point of the grid is
located in area A,, then the grid increases the number of
rolling passes under the corresponding vibration state.

(2) Rolling speed determination

Based on the real-time monitoring system of the roll-
ing construction process, the probability density distribu-
tion of the rolling speed is obtained.

4.1.2. Concrete property parameters

According to “Construction Specifications for Hydraulic
RCC (DL/T5112-2009)" (National Energy Administration of
People’s Republic of China, 2009), the frequency of de-
tection of VC value is once every 2 h, and the frequency
of detection of gas content is once per shift. The number
of samples is not enough for the simulation parameters.
Therefore, this paper uses the improved generation adver-
sarial networks to expand the number of concrete proper-
ty parameter monitoring data samples, and provides suffi-
cient simulation parameters for the simulation of the roller
compacted concrete construction to improve the simula-
tion accuracy. GAN is a generative model proposed by
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Goodfellow in 2014. GAN has been widely used in the field
of image and computer vision. At the same time, GAN is
also widely used in data augmentation and scenario gen-
eration and missing values imputation (Chen et al.,, 2018;
Zhang et al., 2021). It consists of a generator and a dis-
criminator (Goodfellow et al., 2014). Based on the literature
(Gulrajani et al., 2017), this paper considers the time series
characteristics of concrete property parameter monitoring
data, and introduces LSTM into the generator to improve
the reconstruction effect.

Improved the generative adversarial networks to re-
construct the VC value and data of the air content sam-
ple, and then use the probability density estimation meth-
od based on the DPM model to determine the parameter
probability density distribution.

Select the completed roller compacted concrete prop-
erty parameter data of the storehouse surface in the real-
time monitoring system as the training set, select i groups
data of concrete storehouse surfaces in the real-time mon-
itoring system, and the monitoring data is defined as x;.
Due to the intricate distribution relationship between real-
time monitoring data such as VC and air content, suppose
itis p,(x), p.(x) is difficult to describe through explicit
mathematical model. Suppose there is a set of noise vec-
tors that obey the joint Gaussian distribution p,(z). At the
same time, a deep neural network with the ability to han-
dle complex nonlinearities is used to establish the map-
ping relationship between p,(z) and p,(x). As a result, by
sampling from a known distribution as input, new data
that satisfies the distribution relationship of original data
can be generated.

The establishment process of the mapping is realized
through the training of GAN, the basic structure of GAN
network is shown in the Figure 4. GAN consists of two
parts: generator G(6(®)) and discriminator G(6®)), where
0(@ and 6P respectively represent the weights of the two
networks.

As a generator G(6(©)) gets random vectors from some
prior noise distribution. In an attempt to confuse G(8®)
into giving false discriminative results, the generator trans-
forms these vectors into a distribution as close as possible
to the real sample data. In our research, we aimed to en-

Figure 4. Concrete property monitoring data reconstruction
framework based on IGAN
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hance the performance of traditional GANs by address-
ing some of their inherent limitations. The introduction of
LSTM layers allows our model to better capture long-term
dependencies in the data, which is particularly beneficial
for sequences that exhibit temporal patterns. This capabil-
ity is critical in generating more coherent and contextu-
ally relevant outputs, as it enables the model to maintain
information over longer intervals compared to standard
GAN architectures. Additionally, the incorporation of batch
normalization layers serves to stabilize the learning pro-
cess by normalizing the input to each layer, which helps
mitigate issues such as internal covariate shift. This leads
to faster convergence and improved overall performance,
as it allows the model to learn more effectively from the
training data. Instead, the discriminator G(6®)) attempts
to judge whether an input sample is a sample obtained
from real data or a synthetic sample. At the same time,
for a given noise vector z, G(6(®)) outputs synthetic sam-
ples x; = G(2). G(6©D) gets real sample x, and the gener-
ated sample x,. Then, it outputs probability values D(x,)
and D(x,), which indicate whether the input samples come
from real data. During the adversarial training process, the
generator attempts to generate samples as close as pos-
sible to the real data distribution and makes the generated
sample x; to confuse the discriminator to give the result
as D(x,) = 1, while the discriminator attempts to give the
result as D(xg) =0and D(x,)=1.
The loss functions are defined as follows:

D (G (z))} ; ©)

D(G(z))}.

In Eqn (6), E represents the expected distribution; G(z)
represents the data generated by the generator, and D(~)
represents the output of the discriminator network. The
training process of GAN can be regarded as a zero-sum
game problem in essence. The objective function of the
game process is:

L= _Ez~pz(z)

Ly = _Ex~p, (x)

D(x)|+E,., )

minmaxV(G,D) =E, _, ([DI-E,_, [DG)]. (7)

After the adversarial training process is finished, a Nash
equilibrium will be reached between G(8()) and G(6).
And the generator G(8(?) tends to generate samples close
to the true distribution, and the discriminator G(6®)) tends
to give the result that the probability of generating sam-
ples and real samples is equal. Eqn (7) ensures the gener-
ated data closely matches the real distribution, enhancing
model accuracy in real-time concrete property parameters
reconstruction.

The detailed network parameters of the generator are
shown in Table 1.

The detailed network parameters of the discriminator
are shown in Table 2.

The choice of the size of the SpectralNormalization
(Conv1D) convolution kernel and the number of filters is
determined by experiments.

Table 1. Generator network structure

Layer Name Parameters Value
1 |LST™M units 256
activation tanh
recurrent activation | sigmoid
Batch Normalization | momentum 0.9
LSTM units 128
activation tanh
recurrent activation | sigmoid
4 | Batch Normalization | momentum 0.9
5 |LST™M units 64
activation tanh
recurrent activation | sigmoid
6 [Batch Normalization | momentum 0.9
7 |concatenate / /
8 |Dense units 32
9 [Batch Normalization | momentum 0.9
10 | LeakyRelLU / /
11 |dense units
Table 2. Discriminator network structure
Layer Name Parameters Value
1 Spectral Normalization filters 64
(Conv1D) kernel size 4
2 LeakyRelLU / /
Spectral Normalization filters 128
(Conv1D) kernel size
4 | LeakyRelLU /
Dropout rate 0.2
Spectral Normalization filters 196
(Conv1D) kernel size 4
LeakyReLU / /
Dropout rate 0.2
Spectral Normalization filters 392
(Conv1D) kernel size 4
10 |LeakyRelLU /
11 | Flatten /
12 Dense units 32
13 LeakyRelLU / /
14 | Dropout rate 0.15
15 |concatenate / /
16 [Dense units 16
17 LeakyReLU / /
18 |[Dense units 1

4.2. Construction quality analysis

The parameters affecting the compaction quality of the
storehouse surface include rolling parameters and con-
crete property parameters. This paper uses IGWO-CNN
to establish the nonlinear mapping relationship between
vc, air content, rolling passes, rolling speed and compac-
tion degree. Simultaneously, in order to improve GWO al-
gorithm optimization performance, this paper makes the
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following two improvements on the basis of the literature

(Faris et al., 2018).

(1) Since the convergence factor a affects the global
search ability and local exploration ability of the al-
gorithm, the value of the convergence factor a in the
original gray wolf algorithm decreases linearly from
2 to 0, which is easy to cause the algorithm to con-
verge prematurely and fall into a local optimum. To
solve this problem, the nonlinear cosine convergence
factor is introduced as the first improvement, which
can avoid the prematurity of the algorithm. The ex-

pression is:
a=2cos Exlti. (8)
2 Maxliter

(2) When the individual gray wolf is updating the posi-
tion, the traditional GWO still has defects such as easy
to fall into slow convergence and local optimum. In
order to further improve the performance of the algo-
rithm and avoid the complexity of the algorithm, the
Gaussian mutation operator is added to the gray wolf
position update equation as the second improvement.
The basic form is as follows:

- 9
Xiter = Xiter 1+Efp,02 (X) '

Table 3. Pseudo-Code of IGWO-CNN
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Due to the non-linear relationships of the real-time
monitoring data of concrete construction, this paper
adopts the Convolutional Neural Network Optimized by
Improved Grey Wolf Optimization Algorithm (IGWO-CNN)
to adaptively solve the nonlinear correlation in multivariate
data. The pseudo code of the algorithm is shown in Table 3.

In this way, the accuracy and generalization ability of
the evaluation of roller compacted concrete compaction
quality is improved. Hyperparameter optimized using IG-
WO including batch size, number of kernels, kernel size,
their value ranges from [1, 20], [10, 50], and [1, 4] respec-
tively. The CNN network structure used in this paper is
shown in the Figure 5. In Figure 5, w; and h; represent the
width and height of the input vector, respectively in input
layer. ¢, and ¢, are the width and height of kernel size. w,
and h, respectively represent the width and height of the
feature map in the convolutional layer. In this paper, both
h;and h. are 1.

The training process of the CNN (Goodfellow et al.,
2016) network in the paper is as follows.

(1) Forward- propagation

In each layer of CNN model, the forward propagation
algorithm is applied to calculate the output of each layer

Algorithm 1. The Proposed
Evaluating Algorithm (IGWO-CNN)

Input: The number of population N,,,, and the maximum number of iterations Ni,.

Output: Compaction degree
Begin

: Divide dataset into train set D, and test set D,;

: Initialize the parameter a, A and C and the population of gray wolves X; (i =12---N

1

2

3: for <1 < Npop) do

4:  Set the value of X; as a hyperparameter for the CNN model;
5

PDP)’

Computing the fitness of X; is performed using Eqn (11) for D, and set it as the loss of CNN;

6: end for

7: Set X, XB' Xs as the best solution, second best solution, third best solution, respectively;
8: while (n < Nite,> do

9:  for each X;do

10: Perform the Gaussian mutation operator by Eqn (9);

11: Update X; position;

12: Set the value of X; as a hyperparameter for the CNN model;

13: Computing the fitness of X; is performed using Eqn (11) for D, and set it as the loss of CNN;
14: end for

15: Update a using Eqn (8) A and C;

16: Xy Xgand X5 Update;

17: n=n+1,

18: end while

19: Set the value of X, as best hyperparameter for the CNN model;

20: Evaluate the compaction degree in D, using the optimized CNN model;

End
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Figure 5. CNN structure in the paper

of neurons. The neuron input and output calculation for-
mula are as follows:

m-1
m _ pm m-1 cm—1).
X7 = b § » conv1D<Wik .S )

y,’(":f(x,'j’).

In Egn (10), the bias of kth neuron in m layer is defined
as b, the weight from the ith neuron in m — 1 layer to
the kth neuron in m layer is defined as w71, the output
of the ith neuron in m — 1 layer is defined as s™~1. x[ is
the kth input in m layer. y[" represents the output of the
kth neuron in m layer, and the activation function used in
1-D CNN is defined as f(-).

(10)

(2) Backward-propagation

Assume that the loss function of the sample in the out-
put layer of the network is:

o=yl an
P

In Egn (11), n is the number of neurons in the output
layer of the network, y, is the output on the kth neuron,
and o is the ideal output of the objective function. Cal-
culate the partial derivative of the error e with respect to
the weight w and the bias b respectively, and then use the
gradient descent method to update. The loss function of
backward- propagation, expressed in Eqn (11), minimizes
the difference between the predicted compaction quality
metrics and real measurements, driving the network to im-
prove its predictions iteratively.

4.3. Simulation process adaptive adjustment

In Sections 4.1 and 4.2, we described the methods for de-
termining construction simulation parameters and evalu-
ating compaction quality, respectively. In this section, we
will elaborate on how to adaptively adjust the construction
simulation logic when the simulation clock advances to the
layer CPM model. In the CPM model, after the quality in-
spection activity of the last rolling band is completed, it
is judged whether the layer needs supplementary rolling.
Steps are as follows.

(1) Simulation parameter assignment

Based on the real-time monitoring system and DPM
model, the probability density distribution of VC value,
air content, and rolling speed and deflection angle is ob-
tained. Randomly assign values to each grid in the layer
according to the probability distribution of VC value, air
content, and rolling speed and deflection angle.

(2) Compaction degree calculation

Calculate the number of rolling passes through the
simulation of the rolling process, At the same time, the
compaction quality analysis model is carried out, and the
compaction degree of the roller compacted concrete at
each grid position is calculated.

(3) Supplementary rolling judgment

According to the formula below, the compaction qual-
ity standard ratio (r,) of the layer is calculated:

=N, g /N. (12)

In Egn (12), Nr’q is defined as the number of grids with
qualified compaction quality, N is defined as the total
number of the layer grids.

ifr.> oo o is the qualified ratio of the compaction
quality standard in the layer, no need for supplementary
rolling, layer construction CPM model does not include
supplementary rolling activity. If r, <r, ;, add supplemen-
tary rolling activity in the layer construction CPM model,
and enter step (4) to calculate supplementary rolling du-
ration.

(4) Supplementary rolling area priority determination

Combine adjacent unqualified grids into area (A;), com-
prehensively consider the area and compaction quality of
each unqualified area, and determine the priority of the
area that needs to supplementary rolling.

(5) Transition time calculation

After determining the supplementary rolling area, the
path () of the roller from its current position to the sup-
plementary rolling area (A;) could be determined, then cal-
culate the corresponding supplementary rolling transition
time according to the average rolling speed (v,) of the
storehouse surface.
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(6) Calculate supplementary rolling parameter

Through the intelligent analysis model of compaction
quality, the passes of static rolling and vibrating rolling is
gradually increased to determine the minimum number of
supplementary rolling passes.

(7) Area (A) supplementary rolling simulation

Randomly generate the rolling speed (v) and rolling
deflection angle () to simulate the process of Area (A)
supplementary rolling, after finishing supplementary roll-
ing, return to step (2) to calculate the compaction degree
and judge whether supplementary rolling is necessary
again, until the layer compaction quality is qualified.

(8) Calculation of total supplementary rolling duration.

5. Solution method based on DES
and deep learning

In Section 4 of this paper, we constructed a dynamic con-
struction progress simulation mathematical model based
on the CPM network planning technique, CYCLONE simu-
lation technology, and mathematical modeling methods.
In this chapter, we will present the solution process based
on the principles of discrete event simulation and deep
learning methods. Concrete rolling construction could be
modeled as a discrete stochastic dynamic service system.
As shown in Figure 6, Global simulation clock, local sim-

ulation clock and rolling process simulation clock are re-
spectively set to advance the storehouse surface CYCLONE
model, the CPM model of simulation process of the layers
and the simulation process of rolling. It can simulate the
rolling process of rolling compacted concrete in the op-
eration level and the activity level, which ensures the re-
finement and efficiency of the simulation process. To re-
cord the running trajectory of simulation time, the three
simulation clocks use next-event time advance (Law, 2015).

In each simulation cycle, the monitoring data of con-
crete rolling construction is obtained firstly. The data
mainly includes concrete property parameters and roll-
ing parameter. After simulation parameter imputation
and global simulation clock initialization, global simula-
tion clock advances At to judge whether event has oc-
curred. If an event occurs, the system will enter the event
and determine whether it is a simulation event, while cor-
respondingly changing the state of relevant entities in the
system. Local simulation clock is invoked to simulate the
layer construction at the time that global simulation clock
reaches layer activity. The activity level of the rolling pro-
cess is tracked by recording the roller’s position, the num-
ber of passes completed over a specific area, and the com-
paction energy applied. These parameters are continuous-
ly updated and used to assess event triggers, such as the
completion of a compaction cycle or the need for addi-
tional passes.

Figure 6. Model solving process based on discrete event simulation method and deep learning



When local simulation clock reaches rolling activity, the
rolling process simulation clock is invoked and the con-
crete rolling process is simulated. Until rolling process is
completed, the rolling process simulation system records
the rolling duration and rolling passes of each grid. When
local simulation clock reaches quality inspection activity,
concrete property parameters are reconstructed by IGAN,
then VC, air content, rolling speed and rolling passes are
used to calculate each grid compaction degree by IWGO-
CNN. If supplementary rolling is needed, the supplemen-
tary rolling is simulated.

In this paper, t-distribution method is used to solve
the confidence interval of the construction duration with
a confidence level of 1 — a. The solution steps are as fol-
lows.

(1) Calculate the mean value of simulation duration x
and variance S%

S
X= ZZ[:{E“’ (13)

T o1 n _
ML S O

In Egn (13), x is the mean value of simulation dura-
tion, &; is the value of each simulation duration, $? is the
variance of simulation duration, n the number of simula-
tion times.

(2) Structure pivot:

¥ —
T="/ Rt o (14)
Vi
(3) Shortest confidence interval

For a given g, find b and c so that the following for-
mula:

X
Pla<T<b}=p "Sy <bl_q1_a (15)
h

In Egn (14), a is confidence, a is the lower limit of the
pivot interval, b is the upper limit of the pivot interval.
When b=-a=t, , % , the length of the confidence
interval is the shortest.
(4) Calculate the confidence interval of the construction
duration
Solve the inequality:

d
2

a

ﬂ<t > |

< <t
Vi

The confidence interval of the construction duration
with a confidence level of 1 — a is calculated:

t

n—1

(16)
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6. Case study

To validate the feasibility and effectiveness of the simula-
tion model, a roller compacted concrete dam (HD dam)
located in Yunnan province, southwest China is selected
as a case study.

The proposed simulation model was programmed in
Python 3.7.10 and Visual Studio 2019. In addition, the deep
learning module is programmed in python language, and
the rest of the simulation modules are programmed in
C++ language. The simulation program interface is shown
in the Figure 7.

Generally, concrete rolling construction takes the store-
house as the placement unit. Taking Storehouse 10#~11#—
1468 m~1471 m as an example, the adaptive adjustment
analysis of the simulation process is carried out. The place-
ment process adopts a horizonal layer organization form,
and the storehouse is divided into 10 rolling layers. It is
equipped with 4 paving machines and 9 rolling machines.
The standard rolling pass of the storehouse surface is stat-
ic rolling 2 passes plus vibrating rolling 6 passes and the
design rolling speed is 2 km/h.

6.1. Rolling parameters and concrete
property parameters

First, based on the real-time monitoring system of con-
crete rolling construction, the concrete property param-
eters and rolling parameters of the storehouses before
the construction of the pouring storehouse 10#~11#-
1468 m~1471 m are collected.

Then, according to the refined simulation process of
the storehouse surface construction, the storehouse sur-
face construction preparation activities before the first lay-
er construction are simulated, and the simulation clock is
advanced to the first layer level construction in the store-
house surface construction CYLCLONE model.

When simulating the construction of the first layer, call
the layer CPM model and the rolling process simulation
model in the construction simulation program until the
quality inspection of the last rolling band is completed. At
the same time, through the rolling process simulation in
the construction simulation program, the number of static
rolling passes, the number of rolling passes and the aver-
age rolling speed at each grid in the layer have been ob-
tained. Meanwhile, samples of concrete property param-
eters are enriched based on IGAN.

The reconstruction result is shown in Figures 8a and
8b.

The training set has a total of 1064 data, the batch size
is 64, the epochs is 100, and the training process will it-
erate 1600 times. The loss function curve of the training
process is shown in Figure 8c. It can be seen from the fig-
ure that the discriminant loss fluctuates around zero after
50 iterations. The generation loss is stable after 1300 it-
erations and fluctuates around zero. To test whether un-
derfitting of the model occurs, the Kullback-Leibler Diver-
gence (Bishop & Nasrabadi, 2006) and RMSE of the vc and



Journal of Civil Engineering and Management, 2025, 31(8), 843-859

Figure 7. HD dam construction simulation program

a) b)

) d)

Figure 8. Concrete property parameters reconstruction result



air content generated samples and the real samples were
calculated when the epoch is 100, and the Kullback-Leibler
(KL) Divergence calculation formula is shown in Egn (18):

N p(x)
o (p | q) Zi:1p(x(.)log CI<X1‘>
In Eqn (18), p(x;) is true distribution, q(x;) is approxi-
mate distribution. When epoch is 100, the KL Divergence
and RMSE of vc are calculated to be 0.0177 and 0.406, re-
spectively, while the KL Divergence and RMSE of Air con-
tent are calculated to be 0.0192 and 0.377, respectively.
The result shows that the model performs well on the
training set. At the same time, in order to avoid overfit-
ting, the dropout algorithm is used to randomly set the
neuron activation function of a part of the hidden layer
to 0 during each iteration of the training process. In or-
der to verify the generalization ability of the model, a to-
tal of 327 pieces of data in the test set were tested. The
Kullback-Leibler Divergence and RMSE of each epoch are
shown in Figure 8d. We can be seen from the figure that
with the increase of epoch, Kullback-Leibler Divergence
and RMSE fluctuate occasionally, but the overall trend is
convergence.
Finally, according to the probability density estimation
method based on the DPM model, the probability density
function of the reconstructed VC value is determined as

f(x) = 0.3214N(p,02) + 0.0348N(,,0,%) +

0.3214N(u5,052) +0.2876N(p,, 0,2) + 0.0348N (s, 0,2),

where

(b, Ty) = Nl | ~0.031,(0.0037) ') Gamma x,[172.00,153.823);
(. T,) = Nl | ~2202,(0.0277) 1) Gamma x,119.50,15.359);
(3. T3) = N(i3 |0.703,(0.003¥) ) Gamma t,[172.00,59.696);
(1, T,) = NGy | -0.638, (0.0031)*1)Gamma('r 4[154.00,20.442);
Tt (s, T5) = Nl |1.265,(0.0271)" ") Gamma(t4[19.50,16.769),

. (18)

the probability density function of the reconstructed air
content value is determined as:

f(x) = 0.3214N(u,,0:2) + 0.3139N(,, 0,%) +

0.3214N(u5,05%) +0.0432N(l,,0,2) ,

where

(. ;) = Niyt; |0.110,(0.0031) ") Gamma t,172.00,133.31);
(b, T,) = N, | ~0.828,(0.0037) ") Gamma(x,/168.00,91.383);
(3, T3) = Nli3 |0.508,(0.0037) ") Gamma(x,[172.00,92.652);
(g, Ty ) = Nl |1417,(0.0227) ") Gamma(x,, | 24.00,8.280) -

6.2. Compaction degree calculation

Firstly, the prediction model is trained based on the exist-
ing monitoring data to obtain the optimal CNN hyperpa-
rameters. The total sample is 256 data, 70 data are ran-
domly selected as the test set, and the others are used as
the training set. Set the epochs of CNN to 100, the pop_
size of IGWO to 50, and the iterations of IGWO to 100 for
training. After optimization, the batch size, number of ker-
nels, and kernel size are obtained as 6, 32, 2. The test set
prediction results are shown in the Figure 9a.
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In order to analyze the validity and superiority of the
model, as Figure 9b shows, this paper compares and ana-
lyzes the algorithm in this paper with SVR, CNN, and Ran-
dom forest. By comparison, it is found that IGWO-CNN is
better than other methods except that the maximum ab-
solute error is larger than that of Random forest, and the
overall evaluation performance is better. Among them, the
R? of IGWO-CNN is 0.8596, while the R? values of SVR,
CNN, and Random Forest are 0.779, 0.8123, and 0.8498,
respectively. By examining the MAE, it can be observed
that the proposed model still outperforms the other three
models. The MAE of IGWO-CNN is 0.3491, which is the
smallest among the four methods. The RMSE of IGWO-
CNN is 0.4235, which is the smallest. Furthermore, the MSE
performance of the IGWO-CNN model is also better than
that of the other three models, which is 0.1794.

Then the IGWO-CNN model is called to obtain the
compaction degree of the first layer after the initial roll-
ing, as shown in Figure 10.

The calculated layer compaction quality standard ratio
is 93.73%, which does not meet the qualified ratio of the
compaction quality standard in the layer (95%). Supple-
mentary rolling is needed, so the supplementary rolling
activity is added after the last quality inspection activity of
the CPM model. Next, calculate the duration of the supple-
mentary rolling process. Consider the area and compac-
tion quality of each unqualified area, and determine the
priority of the area that needs to supplementary rolling.

As shown in Figure 11, the unqualified areas A4, A;, As,
and A, have larger areas and lower compaction degree, so
the unqualified areas A4, A, A;, and A, need supplemen-
tary rolling. Since the layer is equipped with 9 roller, one
roller is arranged for each unqualified area.

Assuming that at the end of the first rolling of the lay-
er, the roller are all located at the end of rolling bands. The
calculated distances between the roller and the nearest
end of the supplementary rolling area are 47.15 m, 6.52 m,
119.36 m and 50.99 m, respectively. At the rolling speed of
2 km/h, the transition time to A4, A,, and Az is 1.41 min,
0.20 min, 3.58 min and 1.53 min, respectively.

Finally, the IGWO-CNN model is called, and a trial al-
gorithm is used to determine that at a rolling speed of
2 km/h, areas A, A, Az, and A, need to add vibrating
rolling 1 pass plus static rolling 1 pass, vibrating rolling
1 pass, vibrating rolling 1 pass plus static rolling 1 pass
and static rolling, 2 passes respectively. According to the
maximum length and maximum width of the unquali-
fied area, the rolling process simulation was carried out,
and the rolling duration of the area is 1.76 min, 1.38 min,
1.59 min, and 2.16 min, respectively.

After the simulation of the supplementary rolling pro-
cess is completed, the IGWO-CNN model is called again to
calculate the compaction degree of the layer, and the re-
sult is shown in Figure 11. Although area A, A3, and A, still
have grids that compaction degree has not reached 98%,
the layer compaction quality standard ratio has reached
96.78%, and there is no need for supplementary rolling.
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a) b)

Figure 9. Compaction quality evaluation results

Figure 10. Layer compaction degree after initial rolling

Figure 11. Layer compaction degree after supplementary rolling

Calculate the sum of the transition and rolling time of area 6.3. Construction simulation result
A, Ay Az and A, respectively, the longest time is the sup-

plementary rolling duration of the entire layer, so that the Through the above cycle, until the simulation of the last
layer supplementary rolling duration is 5.17 min. Accord- layer of the storehouse surface is completed, the supple-
ing to the average value of each grid compaction degree, mentary rolling duration and the average value of com-

the average compaction degree of the first layer is 98.66%. paction degree of each layer is obtained as shown in Ta-



ble 4. Among them, the 6th and 10th layer construction
simulation did not carry out supplementary rolling adjust-
ment.

Table 4. Storehouse 10#~11#-1468 m~1471 m simulation result

Layer | Supplementary rolling | Mean value of Compaction
number Duration (min) degree (%)
1 5.17 98.66
2 4.69 98.95
3 7.92 98.67
4 4.49 98.79
5 3.90 99.17
6 / 98.19
7 3.29 98.46
8 4.64 99.60
9 4.41 98.87

10 / 98.11

Note: “/" means no supplementary rolling.

7. Discussion

The effectiveness of the proposed simulation model for
the storehouse surface in the schedule analysis is verified
by comparing the construction duration obtained by the
simulation with the actual construction duration. HD dam
is divided into ten construction areas, this paper takes the
typical 10 storehouses in construction area 1 as an exam-
ple. The construction time lasted from 15:45 on June 30,
the fifth year of construction of the project to 17:26 on De-
cember 24, the fifth year of construction of the project. Ex-
cluding the interval between storehouses, the total actual
construction duration of the storehouses is 798.58 hours.

In order to explore the influence of the compaction
quality on the simulation accuracy, this paper conducts
a refined analysis of the simulation modes 1 and 2. The
details are shown in Table 5.

Simulation modes 1 represents the simulation mode
without considering the compaction quality, in contrast,
mode 2 considers the compaction quality. To measure the

Table 5. Typical 10 storehouses duration comparation
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degree of this deviation, define the deviation rate:
D —

Ay |Tsi_Ta|
=— — 9 _%100%.
n n; T,

(19)

In Eqn (19), n is simulation times, in this simulation
n = 100, Ts’ is the construction duration obtained by the
ith simulation, T, is actual construction duration, D, is the
deviation rate of construction duration after n simulations.

Based on the simulation results in Table 5, it can be
found that the deviation rates of the two simulation
modes show a downward trend as a whole. The reason
is with the progress of the construction process, the per-
ception of data continues to increase, the sample size of
construction data continues to increase, and the estimated
construction parameter distribution is closer to reality. At
the same time, the deviation between the simulation con-
struction duration and the actual construction duration is
gradually reduced, which proves that the simulation accu-
racy has also been correspondingly improved.

Table 5 shows the simulated construction duration and
actual construction duration of the typical 10 storehouses
in construction area I. Except for the second storehouse
in simulation mode 1 and the third storehouse in simula-
tion mode 2, the 95% confidence interval of the simulation
construction duration of all storehouses includes the ac-
tual construction duration, which proves the effectiveness
of the proposed simulation of roller compacter concrete
construction. Specially, the deviation rate of third store-
house in simulation mode 2 is 9.21%, it is larger than sec-
ond storehouse’ deviation rate which is 8.98%. Analyzing
the causes of the above two phenomena, it is not difficult
to find that these storehouses are in dynamic stage |, since
construction area | is the first placement area of the entire
roller compacter concrete dam project, construction ma-
chinery and personnel are still in the construction adapta-
tion period, and the construction conditions of the store-
house surface change frequently. The construction condi-
tions in the early stage of construction are unstable, so the
simulation results will be biased. With the progress of the
dam construction progress, the proficiency of construc-

Simulation duration of mode 1 Simulation duration of mode 2

Storehouse duﬁzfilon Mean 95% confidence intervals D, Mean 95% confidence intervals D,
(h) (h) infimum (h) Supremum (h) (%) (h) infimum (h) Supremum (h) (%)

1# 137.13 * * * * * * * *
2# 90.36 87.13 84.87 89.39 9.86 88.66 86.64 90.68 8.98
3# 72.04 73.73 72.02 75.44 9.26 73.79 72.10 75.49 9.21
A# 68.17 69.35 67.84 70.86 8.57 68.44 67.02 69.85 8.26
S# 81.89 81.52 79.93 83.10 7.86 82.03 80.54 83.51 7.18
6# 66.51 65.45 64.27 66.64 6.90 66.92 65.78 68.06 6.85
T# 81.38 82.88 81.25 84.51 8.44 81.26 80.16 82.36 5.49
8t 58.05 58.92 57.92 59.92 7.58 58.78 57.71 59.85 743
o# 70.67 70.29 69.18 71.40 6.01 70.29 69.45 71.14 491
10# 7238 72.29 71.24 7334 5.89 72.86 7230 7343 3.22
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tion operations and management continues to improve,
and the overall construction conditions tend to be stable.

The above analysis shows that the simulation model
considering compaction quality can improve the accuracy
of construction simulation; at the same time, it also shows
that by providing sufficient simulation parameters, the es-
tablished refined simulation model for storehouse surface
construction can accurately reflect the real construction
process.

8. Conclusions and future work

Construction schedule and quality are major concerns for
construction manager. This research developed a deep
learning based simulation model which could analysis con-
struction schedule and quality, Simultaneously, take con-
crete rolling construction as an example to verify the su-
periority of the model.

The contribution of this study is accurately evaluating
compaction degree of the layer, which can be integrated
into the RCC construction simulation program. First, the
rolling process monitoring data is reconstructed by IGAN
methods, and then a compaction degree analysis model
based on IGWO-CNN is proposed. Finally, engineering ex-
amples are used to validate the model’s simulation perfor-
mance, and the results are compared to traditional simu-
lation without considering compaction quality. The main
achievements of this paper are listed as follows:

(1) Based on the study of monitoring data of concrete
property parameter, a IGAN method is used to ex-
pand the concrete performance parameter sample
to provide sufficient data for the simulation pa-
rameter update.

(2) A compaction evaluation model for dealing with
complex nonlinear mapping relationships is pro-
posed. Result shows that IGWO-CNN performs
with the higher accuracy.

(3) To simulate the project's schedule, a construction
schedule simulation method based on the roller
compacter concrete construction real-time mon-
itoring system is built. The compaction degree
analysis model is integrated into the roller com-
pacted concrete construction simulation model,
and it allows for an effective compaction degree
analysis and a construction schedule simulation for
the roller compacter concrete construction, which
allows for an accurate analysis of the storehouse
compaction quality and the efficient development
of the construction schedule.

As far as we know, this is a good application for de-
tailed analysis of the influence of compaction quality fac-
tors on the simulation process in the simulation of roll-
er compacter concrete construction. In future research,
some enhancements could be made in our research. On
the one hand, more possible impact factors such as roller
compacter concrete compaction stiffness on compaction
degree could be further considered to increase the pre-
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cision of the simulation model. By collecting more real-
time monitoring data, we can more comprehensively ana-
lyze the impact of various factors on compaction quality
and construction progress, thus improving the accuracy of
compaction quality evaluation and construction progress
simulation models. On the other hand, more integrated
simulation models could be created to analysis the compli-
cated relationships between multiple project performance
parameters (such as cost, safety and schedule) and crucial
impact variables (such as human behavior, equipment effi-
ciency and weather). Furthermore, although the proposed
simulation model can substantially enhance concrete con-
struction quality evaluation and simulation accuracy of du-
ration, its reliability and accuracy are heavily reliant on the
availability and quality of data, so new data mining tech-
niques should be used to improve computing efficiency.
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