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1. Introduction
Roller Compacted Concrete (RCC) is a specialized type of 
concrete widely used in heavy construction, particularly for 
large-scale infrastructure projects such as dams (Liu et al., 
2015a), roads (Aghaeipour & Madhkhan 2020), airports 
(Zhang et al., 2022), and navigation-power junction pro-
ject (Zhang & Zeng, 2018). It is named for the construc-
tion method used, where the concrete is compacted using 
rollers rather than being poured and vibrated like conven-
tional concrete. RCC has become a preferred material for 
large infrastructure projects due to its durability, speed 
of construction, and cost-efficiency. Roller compaction is 
a crucial stage in the concrete construction process and 
is one of the key factors in ensuring construction quality 
and project schedule. Therefore, in RCC dam construction, 
roller compaction is highly valued by project managers.

In order to achieve effective construction schedule 
control, researchers have investigated many construction 
simulation methods. Halpin (1977) proposed a  discrete 
event simulation method called CYCLONE for repetitive 
projects. After that simulation methods like UM-CYCLONE 

(Ioannou, 1990), MODSIM (Oloufa, 1993), STROBOSCOPE 
(Martinez & Ioannou, 1994), Simphony (AbouRizk & Mo-
hammed, 2000), SDESA (Lu, 2003) have been proposed. 
These methods bridge the gap between the real construc-
tion system and the abstract simulation model, facilitating 
the wide use of construction simulation in today’s  con-
struction management. In 2010, Dynamic-Data-Driven 
Application Systems’ comprehensive system architecture 
and methodology (Celik et al., 2010) were proposed. For 
look-ahead planning during field activities, a dynamic re-
al-time monitoring and simulation of heavy construction 
operations (Song & Eldin, 2012) was offered. In order to 
constantly improve the simulation model, an overarch-
ing tracking-technology-independent architecture (Vah-
datikhaki & Hammad, 2014) based on the incorporation 
of new location tracking technologies was developed. In 
tunnel case study, Zhang et al. (2014) adopted a Bayes-
ian technique to continuously update duration distribu-
tions of uncompleted construction activities based on on-
site data. Akhavian and Behzadan (2015) gathered real da-
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ta from construction equipment, and then utilized a ma-
chine learning technique for simulation. In 2016, a rockfill 
dam construction simulation model (Du et  al., 2016) 
based on flow shop construction was presented. In or-
der to design snow removal projects while taking weather 
and truck-related data gathered by real-time sensors in-
to consideration, Mohamed et al. (2017) suggested a da-
ta-driven simulation framework. In addition to schedule, 
Ji and AbouRizk (2018) established a data-driven simula-
tion model to aid decision support systems in estimating 
and controlling the costs of quality-induced rework in the 
production of building products. As artificial intelligence 
advances, many artificial intelligence algorithms are used 
in simulation models, such as evolutionary method in-
spired by chaos theory (Shrestha & Behzadan, 2018), fuzzy 
Bayesian update algorithm (Guan et  al., 2018), Bayesian 
field theory (Zhang et al., 2020), improved extreme gra-
dient boosting (XGBoost) approach (Lv et al., 2020), op-
timized hybrid-kernel RVM (Song et al., 2020), enhanced 
semi-supervised ensemble machine learning approach 
(Zhang et al., 2023).

These simulation models provide a  good theoretical 
basis for the simulation of concrete rolling construction. 
Above all, discrete event simulation method is an impor-
tant means of analyzing the progress of concrete rolling 
construction (Hu et al., 2019a). Concrete rolling construc-
tion simulation (Zhong et al., 2015) is the key of construc-
tion management, which can avoid reworks and opera-
tion conflictions, improve the resource utilization rate and 
save project time and cost. Wang et al. (1995) used sys-
tem simulation and a queue stochastic simulation network 
to simulate roller compacted concrete dam construction. 
Luo et  al. (2009) proposed a petri net based simulation 
method to analyze the interaction relationship between 
the roller compacted concrete dam production, transpor-
tation and placement process. Zhao et al. (2013) studied 
the roller compacted concrete pouring process system 
and construction schedule optimization for the limited 
resource conditions of roller compacted concrete dams. 
Wang et al. (2018b) proposed an RCC dam construction 
simulation approach that uses Bayesian updating method 
and real-time monitoring technology to update the sim-
ulation model. Hu et al. (2019b) used the DPM model to 
analyze the perception data, determines the probability 
density distribution of the simulation parameters, and uses 
the SUGS algorithm improved by permutation entropy to 
quickly solve the DPM model under the real-time percep-
tion data stream, so as to realize the adaptive update of 
the simulation parameters.

However, through a literature review, it was found that 
most of the current articles on RCC dam construction sim-
ulation primarily focus on updating simulation parameters 
and do not consider the impact of compaction quality on 
the construction schedule of RCC dams. Compaction qual-
ity of roller compacted concrete, a significant index of roll-
ing process simulation model, has significant impact to 
the construction simulation results. The reason is that it 

can determine whether additional compaction of the sur-
face is needed and whether the simulation logic needs to 
be adjusted. Therefore, the paper developed an algorithm 
to more accurately assess the compaction quality, which 
can not only finely analyze the construction quality of the 
storehouse surface, but also improve the accuracy of the 
schedule simulation.

Construction quality of rolling process is another con-
cern of project managers (Liu et al., 2015a; Zhong et al., 
2017). Many scholars have carried out research on the 
quality control of different construction materials in the 
rolling process, such as earth-rock material (Liu et  al., 
2012) and asphalt (Hu et  al., 2019a). As for compaction 
quality of roller compacted concrete, based on the inte-
gration of global navigation satellite system (GNSS) tech-
niques, network transmission technology and sensor tech-
nology, Liu et al. (2015b) proposed a  real-time construc-
tion quality monitoring model for storehouse surfaces of 
RCC dams, built a real-time construction quality monitor-
ing system. The digital monitoring of roller compaction 
quality has realized the parameters of storehouse surface 
roller compaction (rolling trajectory of roller compaction 
machine, walking speed, number of roller compaction, ex-
citation force, etc.) all-weather and real-time monitoring. 
At the same time, in order to realize the analysis of com-
paction quality, mathematical statistical methods and ar-
tificial intelligence methods have been successively ap-
plied to evaluating compaction quality. Statistical methods 
mainly include linear regression, etc. Artificial intelligence 
methods (Wang et al., 2018a; Hong et al., 2020) include 
artificial neural network methods, support vector machine 
methods, and deep learning-based methods, etc.

Compared with statistical methods, artificial intelli-
gence-based methods can effectively deal with non-lin-
ear relationships in data. In recent years, due to the out-
standing ability of deep learning algorithms to process 
nonlinear mapping, they have gradually been used in the 
field of prediction. Convolutional neural network (CNN) is 
one of the most popular architectures in deep learning. 
It shows great potential and innovative achievements in 
solving regression problems, such as probabilistic wind 
power forecasting (Wang et al., 2017), NIR calibration (Cui 
& Fearn, 2018) and spatial prediction of groundwater po-
tential mapping (Panahi et al., 2020). Meanwhile, in order 
to improve the ability of neural networks to solve prob-
lems in various fields, the application of evolutionary com-
puting to optimize neural networks has made great prog-
ress (Baldominos et al., 2020; Xu et al., 2022). In this paper, 
an improved gray wolf optimization algorithm is used to 
optimize a one-dimensional convolutional neural network 
to improve its compaction quality prediction performance.

2. Research objective and contributions
Related research has achieved rich results in the construc-
tion simulation of roller compacted concrete and real-time 
monitoring of the roller compacted construction process. 
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However, the existing concrete rolling construction simula-
tion model does not consider the adjustment of the simu-
lation process brought about by the dynamic changes of 
the rolling quality of the construction site. In the existing 
simulation model of concrete rolling construction, the se-
quence of activity nodes consisting of unloading, paving, 
rolling and quality inspection is statically fixed, and the 
simulation process composed of process activity nodes in 
a fixed sequence reflects the ideal process. In fact, in ac-
tual concrete rolling construction, supplementary rolling 
activity will happen according to the construction quality, 
which means that the actual sequence of activities is dy-
namically adjusted.

In this paper, aiming at solving above problems, a sim-
ulation method for roller compacted concrete placement 
process is proposed. Firstly, in order to enhance the au-
thenticity of the simulation model and improve the simu-
lation accuracy, this paper is based on the concrete rolling 
construction digital monitoring system (Liu et al., 2015b) 
to obtain rolling parameters and concrete property pa-
rameters, and at the same time use the improved genera-
tive adversarial networks (IGAN) to reconstruct the con-
crete property monitoring data to solve the problem of 
the small number of samples caused by the long collection 
time interval. The main improvement idea of this paper is 
firstly using Long Short Term Memory (LSTM) neurons in 
the Generator. After each LSTM layer, a batch normaliza-
tion layer is added to improve the network training speed. 
Secondly, to achieve accurate analysis of compaction qual-
ity, this paper use improving grey wolf optimized convo-
lutional neural networks establish an intelligent analysis 
model of compaction degree, and obtain a high-precision 
compaction quality analysis model through the training of 

on-site measured compaction data, so as to realize pre-
cise analysis of the degree of compaction at any position 
of the storehouse surface during the simulation process. 
Finally, the quality intelligent analysis model is embedded 
in the concrete rolling construction simulation model, and 
the simulation process is updated in real time based on 
the quality analysis results. 

3. Research framework

The overall research framework of simulation model of 
roller compacted concrete construction is shown in Fig-
ure 1.

4. Methodology of construction simulation 
model considering quality factors

The mathematical model of concrete rolling construction 
simulation is composed of four parts: objective function, 
state transition equation, simulation parameters, simula-
tion constraints.

(1)	 Objective function:

( ( , ), , , , )R c qT f Q c r M M S C= .	  (1)

In Eqn (1), T  is the storehouse’s  simulation duration, 
( )f × is simulation solution function, ( , )RQ c r  is compaction 

quality, meanwhile, c is concrete property parameters, r is 
rolling parameters. Mc is the set of construction technol-
ogy, including horizontal layer construction and slopping 
layer construction. Mq is the set of compaction quality 
analysis method. S  is the set of construction monitoring 
parameter. C is the construction condition.

Figure 1. Research framework
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(2)	 State transition equation:
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During the simulation, Eqn (2) specifies the state trans-
fer function. ( , )S iT  represents the storehouse surface con-
struction duration at simulation moment ti, ( , )L iT  repre-
sents the layer construction duration at simulation mo-
ment ti, ( , )r iT  represents the rolling construction duration 
at simulation moment ti, Dt is the simulation clock step 
length, ( , )H S i  represents the storehouse surface height 
at simulation moment ti, nL(Dt) is the number of layers 
poured in Dt, hL is layer thickness, ( , )L iN  indicates the se-
rial number of layer, ( , )r iN  is the serial number of rolling 
band, ( )rn tD  is the number of rolling band poured in Dt, 
xi and yi represent the coordinates of the roller at simula-
tion moment ti, vt–1  is the roller speed at simulation mo-
ment ti–1, qt–1  is the roller instantaneous deflection angle 
at simulation moment ti–1.

(3)	 Simulation parameters:

inf sup 1 2, , , ;R vc acQ v v V V N ND Dé ù= ê úë û
， ，

( ) ( ) ;c c cM M P M X= È

( ) ( ) ;q q qM M R M E= È
 				     

(3)

1 2, , , , , ;vc acS v N N V Vqé ù= ê úë û

,C A Né ù= ê úë û . 	

Equation (3) gives the set of simulation parameters. vinf 
and vsup are rolling speed boundary. DVvc. and DVac rep-
resent the change value of vc and air content respective-
ly. ( )cM P  is horizontal layer construction, ( )cM X  slopping 
layer construction. ( )qM R  is concrete property parame-
ters reconstruction method, ( )qM E  is construction qual-
ity evaluation method. v is the roller speed, q is the roller 
instantaneous deflection angle, N1 represents the number 
of static rolling passes, N2 represents the number of vibra-
tion rolling passes, Vvc is defined as the value of VC, Vac 
is defined as the value of air content. A  is the construc-
tion storehouse surface boundary, N is the number of con-
struction machinery.

(4)	 Simulation constraints:

( ) ( ) ;R RQ s Q baseÌ

;cA A£ ;cN N£

;s Nq q£                                                           

(4)

( ) ( ) 0, , 1 .e sT L j T L j T- - £  	

Equation (4) is the simulation constraints. ( )RQ s  is the 
compaction quality calculated in simulation, ( )RQ base  
is Construction specification requirements according to 
“Construction Specifications for Hydraulic RCC (DL/T5112-
2009)” (National Energy Administration of People’s Repub-
lic of China, 2009). And it is also required that the store-
house surface boundary A  in the construction simulation 
should not exceed the storehouse surface range Ac which 
was inputted before the simulation begins, the number 
of construction machinery N cannot exceed the specified 
number of construction machinery Nc. qs is the standard 
ratio of the rolling area in layer. qN is layer compaction 
quality standard ratio in simulation. ( , 1)sT L j -  is the start 
time of layer j – 1, ( , )eT L j  the rolling activity end time of 
layer j. T0 denotes the allowed construction time interval 
between adjacent layers.

4.1. Simulation parameters determination 
4.1.1. Rolling parameters

(1)	 Calculation of rolling passes
As shown in the Figure  2, the concrete rolling con-

struction is a random walking process of the roller under 
the combined action of rolling speed and deflection angle.

The calculation diagram of the number of rolling pass-
es under different vibration conditions is shown in the Fig-
ure 3.

The roller width is assumed to be L cm, and the store-
house surface is gridded to calculate the rolling passes un-
der different vibration states. At the same time, the num-
ber and coordinates of each grid are obtained. Let the 
point coordinates of the roller at simulation moment ti–1  

Figure 2. Diagram of rolling process

Figure 3. Rolling passes calculation diagram
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and ti be 1 1 1( , )i i iR x y- - -  and ( , )i i iR x y  respectively. Deter-
mine the rolling area Ar within the time interval Dt, Ar is 
a quadrilateral region where line 1i iR R-  extends L/2 in the 
vertical direction of the roller trajectory line. Let the coor-
dinates of the four vertices of Ar be ( , )A A AP x y , ( , )B B BP x y , 

( , )C C CP x y , ( , )D D DP x y . The Bresenham algorithm was used 
for determining grid-based rolling areas due to its efficien-
cy in rasterizing linear paths with integer arithmetic. Spe-
cifically, the algorithm is employed to map the roller’s path 
onto a discrete grid by identifying the sequence of grid 
cells traversed during each compaction pass. This ensures 
efficient rasterization of the roller’s  coverage area while 
minimizing computational complexity due to the integer-
based calculations inherent in the Bresenham approach. 
According to Bresenham Algorithm (Flangan, 1990), the 
coordinate relationship between points ABCD and points 

1 1 1( , )i i iR x y- - - , ( , )i i iR x y  satisfies the following formula:
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According to the divided grid, determine which grid 
center is in this area Ar, if the center point of the grid is 
located in area Ar, then the grid increases the number of 
rolling passes under the corresponding vibration state.

(2)	 Rolling speed determination
Based on the real-time monitoring system of the roll-

ing construction process, the probability density distribu-
tion of the rolling speed is obtained. 

4.1.2. Concrete property parameters

According to “Construction Specifications for Hydraulic 
RCC (DL/T5112-2009)” (National Energy Administration of 
People’s  Republic of China, 2009), the frequency of de-
tection of VC value is once every 2  h, and the frequency 
of detection of gas content is once per shift. The number 
of samples is not enough for the simulation parameters. 
Therefore, this paper uses the improved generation adver-
sarial networks to expand the number of concrete proper-
ty parameter monitoring data samples, and provides suffi-
cient simulation parameters for the simulation of the roller 
compacted concrete construction to improve the simula-
tion accuracy. GAN is a  generative model proposed by 

Goodfellow in 2014. GAN has been widely used in the field 
of image and computer vision. At the same time, GAN is 
also widely used in data augmentation and scenario gen-
eration and missing values imputation (Chen et al., 2018; 
Zhang et al., 2021). It consists of a generator and a dis-
criminator (Goodfellow et al., 2014). Based on the literature 
(Gulrajani et al., 2017), this paper considers the time series 
characteristics of concrete property parameter monitoring 
data, and introduces LSTM into the generator to improve 
the reconstruction effect.

Improved the generative adversarial networks to re-
construct the VC value and data of the air content sam-
ple, and then use the probability density estimation meth-
od based on the DPM model to determine the parameter 
probability density distribution.

Select the completed roller compacted concrete prop-
erty parameter data of the storehouse surface in the real-
time monitoring system as the training set, select i groups 
data of concrete storehouse surfaces in the real-time mon-
itoring system, and the monitoring data is defined as xi. 
Due to the intricate distribution relationship between real-
time monitoring data such as VC and air content, suppose 
it is ( )rp x , ( )rp x  is difficult to describe through explicit 
mathematical model. Suppose there is a set of noise vec-
tors that obey the joint Gaussian distribution ( )zp z . At the 
same time, a deep neural network with the ability to han-
dle complex nonlinearities is used to establish the map-
ping relationship between ( )zp z  and ( )rp x . As a result, by 
sampling from a  known distribution as input, new data 
that satisfies the distribution relationship of original data 
can be generated.

The establishment process of the mapping is realized 
through the training of GAN, the basic structure of GAN 
network is shown in the Figure  4. GAN consists of two 
parts: generator G(q(G)) and discriminator G(q(D)), where 
q(G) and q(D) respectively represent the weights of the two 
networks.

As a generator G(q(G)) gets random vectors from some 
prior noise distribution. In an attempt to confuse G(q(D)) 
into giving false discriminative results, the generator trans-
forms these vectors into a distribution as close as possible 
to the real sample data. In our research, we aimed to en-

Figure 4. Concrete property monitoring data reconstruction 
framework based on IGAN
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hance the performance of traditional GANs by address-
ing some of their inherent limitations. The introduction of 
LSTM layers allows our model to better capture long-term 
dependencies in the data, which is particularly beneficial 
for sequences that exhibit temporal patterns. This capabil-
ity is critical in generating more coherent and contextu-
ally relevant outputs, as it enables the model to maintain 
information over longer intervals compared to standard 
GAN architectures. Additionally, the incorporation of batch 
normalization layers serves to stabilize the learning pro-
cess by normalizing the input to each layer, which helps 
mitigate issues such as internal covariate shift. This leads 
to faster convergence and improved overall performance, 
as it allows the model to learn more effectively from the 
training data. Instead, the discriminator G(q(D)) attempts 
to judge whether an input sample is a  sample obtained 
from real data or a  synthetic sample. At the same time, 
for a given noise vector z, G(q(G)) outputs synthetic sam-
ples ( )gx G z= . G(q(D)) gets real sample xr and the gener-
ated sample xg. Then, it outputs probability values ( )rD x  
and ( )gD x , which indicate whether the input samples come 
from real data. During the adversarial training process, the 
generator attempts to generate samples as close as pos-
sible to the real data distribution and makes the generated 
sample xg to confuse the discriminator to give the result 
as ( ) 1gD x = , while the discriminator attempts to give the 
result as ( ) 0gD x =  and ( ) 1rD x = .

The loss functions are defined as follows:

     ( ) ( )( ) ;
zG z p zL E D G z~

é ù= - ê úë û

( ) ( ) ( ) ( )( ) .
r zD x p x z p zL E D x E D G z~ ~

é ùé ù= - + ê úê úë û ë û  	

(6)

In Eqn (6), E represents the expected distribution; ( )G z  
represents the data generated by the generator, and ( )D   
represents the output of the discriminator network. The 
training process of GAN can be regarded as a zero-sum 
game problem in essence. The objective function of the 
game process is:

r ( ) ( )minmax ( , ) E [ ( )] E [ ( ( ))]
zx p x z p zG D

V G D D D G z~ ~= -x . 	(7)

After the adversarial training process is finished, a Nash 
equilibrium will be reached between G(q(G)) and G(q(D)). 
And the generator G(q(G)) tends to generate samples close 
to the true distribution, and the discriminator G(q(D)) tends 
to give the result that the probability of generating sam-
ples and real samples is equal. Eqn (7) ensures the gener-
ated data closely matches the real distribution, enhancing 
model accuracy in real-time concrete property parameters 
reconstruction.

The detailed network parameters of the generator are 
shown in Table 1.

The detailed network parameters of the discriminator 
are shown in Table 2.

The choice of the size of the SpectralNormalization 
(Conv1D) convolution kernel and the number of filters is 
determined by experiments.

4.2. Construction quality analysis
The parameters affecting the compaction quality of the 
storehouse surface include rolling parameters and con-
crete property parameters. This paper uses IGWO-CNN 
to establish the nonlinear mapping relationship between 
vc, air content, rolling passes, rolling speed and compac-
tion degree. Simultaneously, in order to improve GWO al-
gorithm optimization performance, this paper makes the 

Table 1. Generator network structure

Layer Name Parameters Value

1 LSTM units 256
activation tanh
recurrent activation sigmoid

2 Batch Normalization momentum 0.9
3 LSTM units 128

activation tanh
recurrent activation sigmoid

4 Batch Normalization momentum 0.9
5 LSTM units 64

activation
recurrent activation

tanh
sigmoid

6 Batch Normalization momentum 0.9
7 concatenate / /
8 Dense units 32
9 Batch Normalization momentum 0.9
10 LeakyReLU / /
11 dense units 2

Table 2. Discriminator network structure

Layer Name Parameters Value

1 Spectral Normalization 
(Conv1D)

filters 64
kernel size 4

2 LeakyReLU / /
3 Spectral Normalization 

(Conv1D)
filters 128
kernel size 4

4 LeakyReLU / /
5 Dropout rate 0.2
6 Spectral Normalization 

(Conv1D)
filters 196
kernel size 4

7 LeakyReLU / /
8 Dropout rate 0.2
9 Spectral Normalization 

(Conv1D)
filters 392
kernel size 4

10 LeakyReLU / /
11 Flatten / /
12 Dense units 32
13 LeakyReLU / /
14 Dropout rate 0.15
15 concatenate / /
16 Dense units 16
17 LeakyReLU / /
18 Dense units 1



Journal of Civil Engineering and Management, 2025, 31(8), 843–859 849

following two improvements on the basis of the literature 
(Faris et al., 2018).
(1)	 Since the convergence factor a  affects the global 

search ability and local exploration ability of the al-
gorithm, the value of the convergence factor a in the 
original gray wolf algorithm decreases linearly from 
2  to 0, which is easy to cause the algorithm to con-
verge prematurely and fall into a  local optimum. To 
solve this problem, the nonlinear cosine convergence 
factor is introduced as the first improvement, which 
can avoid the prematurity of the algorithm. The ex-
pression is:

2cos
2 Max

itera
Iter

æ ö÷ç ÷= ´ç ÷ç ÷çè ø
. 	 (8)

(2)	 When the individual gray wolf is updating the posi-
tion, the traditional GWO still has defects such as easy 
to fall into slow convergence and local optimum. In 
order to further improve the performance of the algo-
rithm and avoid the complexity of the algorithm, the 
Gaussian mutation operator is added to the gray wolf 
position update equation as the second improvement. 
The basic form is as follows:

( )2
'

,1 ,
2iter iter
a

X X f x 

é ù
ê ú= +ê ú
ê úë û

;

( )2

2

, 2
1 ( )exp( ).

22
xf x 


 

-
= -  	 (9)

Due to the non-linear relationships of the real-time 
monitoring data of concrete construction, this paper 
adopts the Convolutional Neural Network Optimized by 
Improved Grey Wolf Optimization Algorithm (IGWO-CNN) 
to adaptively solve the nonlinear correlation in multivariate 
data. The pseudo code of the algorithm is shown in Table 3.

In this way, the accuracy and generalization ability of 
the evaluation of roller compacted concrete compaction 
quality is improved. Hyperparameter optimized using IG-
WO including batch size, number of kernels, kernel size, 
their value ranges from [1, 20], [10, 50], and [1, 4] respec-
tively. The CNN network structure used in this paper is 
shown in the Figure 5. In Figure 5, wi and hi represent the 
width and height of the input vector, respectively in input 
layer. cw and ch are the width and height of kernel size. wc 
and hc respectively represent the width and height of the 
feature map in the convolutional layer. In this paper, both 
hi and hc are 1.

The training process of the CNN (Goodfellow et  al., 
2016) network in the paper is as follows. 

(1)	 Forward- propagation
In each layer of CNN model, the forward propagation 

algorithm is applied to calculate the output of each layer 

Table 3. Pseudo-Code of IGWO-CNN

Algorithm 1. The Proposed 
Evaluating Algorithm (IGWO-CNN)

Input: The number of population Npop and the maximum number of iterations Niter.
Output: Compaction degree
Begin
1: Divide dataset into train set Dr and test set De;
2: Initialize the parameter a, A and C and the population of gray wolves Xi ( )1,2 popi N=  ;
3: for ( )popi N£

 
do

4:      Set the value of Xi as a hyperparameter for the CNN model;
5:      Computing the fitness of Xi is performed using Eqn (11) for Dr and set it as the loss of CNN;
6: end for
7: Set Xa, Xb, Xd as the best solution, second best solution, third best solution, respectively;
8: while ( )itern N£  do
9:      for each Xi do
10:           Perform the Gaussian mutation operator by Eqn (9);
11:           Update Xi position;
12:           Set the value of Xi as a hyperparameter for the CNN model;
13:           Computing the fitness of Xi is performed using Eqn (11) for Dr and set it as the loss of CNN;
14:           end for
15:           Update a using Eqn (8) A and C;
16:           Xa, Xb and Xd Update;
17:           n = n + 1;
18: end while
19: Set the value of Xa as best hyperparameter for the CNN model;
20: Evaluate the compaction degree in De using the optimized CNN model;
End
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of neurons. The neuron input and output calculation for-
mula are as follows:

( )
1

1 1
1

1 , ;
m

m m m m
k k ik ii

x b conv D w s
-

- -

=
= å

( ).m m
k ky f x=  	

(10)

In Eqn (10), the bias of kth neuron in m layer is defined 
as m

kb , the weight from the ith neuron in m – 1  layer to 
the kth neuron in m layer is defined as 1m

ikw - , the output 
of the ith neuron in m – 1 layer is defined as 1m

is - . m
kx  is 

the kth input in m layer. m
ky  represents the output of the 

kth neuron in m layer, and the activation function used in 
1-D CNN is defined as ( )f × .

(2)	 Backward-propagation
Assume that the loss function of the sample in the out-

put layer of the network is:

( )2
1

1 n

k k
k

e o y
n

=

= × -å . 	 (11)

In Eqn (11), n  is the number of neurons in the output 
layer of the network, yk is the output on the kth neuron, 
and ok is the ideal output of the objective function. Cal-
culate the partial derivative of the error e with respect to 
the weight w and the bias b respectively, and then use the 
gradient descent method to update. The loss function of 
backward- propagation, expressed in Eqn (11), minimizes 
the difference between the predicted compaction quality 
metrics and real measurements, driving the network to im-
prove its predictions iteratively.

4.3. Simulation process adaptive adjustment 
In Sections 4.1 and 4.2, we described the methods for de-
termining construction simulation parameters and evalu-
ating compaction quality, respectively. In this section, we 
will elaborate on how to adaptively adjust the construction 
simulation logic when the simulation clock advances to the 
layer CPM model. In the CPM model, after the quality in-
spection activity of the last rolling band is completed, it 
is judged whether the layer needs supplementary rolling. 
Steps are as follows.

(1)	 Simulation parameter assignment
Based on the real-time monitoring system and DPM 

model, the probability density distribution of VC value, 
air content, and rolling speed and deflection angle is ob-
tained. Randomly assign values to each grid in the layer 
according to the probability distribution of VC value, air 
content, and rolling speed and deflection angle.

(2)	 Compaction degree calculation
Calculate the number of rolling passes through the 

simulation of the rolling process, At the same time, the 
compaction quality analysis model is carried out, and the 
compaction degree of the roller compacted concrete at 
each grid position is calculated.

(3)	 Supplementary rolling judgment
According to the formula below, the compaction qual-

ity standard ratio (rr) of the layer is calculated:

, /r r qr N N= . 	 (12)

In Eqn (12), ,r qN  is defined as the number of grids with 
qualified compaction quality, N  is defined as the total 
number of the layer grids.

If ,0r rr r³ , ,0rr  is the qualified ratio of the compaction 
quality standard in the layer, no need for supplementary 
rolling, layer construction CPM model does not include 
supplementary rolling activity. If ,0r rr r< , add supplemen-
tary rolling activity in the layer construction CPM model, 
and enter step (4) to calculate supplementary rolling du-
ration.

(4)	 Supplementary rolling area priority determination
Combine adjacent unqualified grids into area (Ai), com-

prehensively consider the area and compaction quality of 
each unqualified area, and determine the priority of the 
area that needs to supplementary rolling.

(5)	 Transition time calculation
After determining the supplementary rolling area, the 

path (l) of the roller from its current position to the sup-
plementary rolling area (Ai) could be determined, then cal-
culate the corresponding supplementary rolling transition 
time according to the average rolling speed ( )rv  of the 
storehouse surface.

Figure 5. CNN structure in the paper
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(6)	 Calculate supplementary rolling parameter
Through the intelligent analysis model of compaction 

quality, the passes of static rolling and vibrating rolling is 
gradually increased to determine the minimum number of 
supplementary rolling passes.

(7)	 Area (Ai) supplementary rolling simulation
Randomly generate the rolling speed (v) and rolling 

deflection angle (q) to simulate the process of Area (Ai) 
supplementary rolling, after finishing supplementary roll-
ing, return to step (2) to calculate the compaction degree 
and judge whether supplementary rolling is necessary 
again, until the layer compaction quality is qualified.

(8)	 Calculation of total supplementary rolling duration.

5. Solution method based on DES  
and deep learning 
In Section 4 of this paper, we constructed a dynamic con-
struction progress simulation mathematical model based 
on the CPM network planning technique, CYCLONE simu-
lation technology, and mathematical modeling methods. 
In this chapter, we will present the solution process based 
on the principles of discrete event simulation and deep 
learning methods. Concrete rolling construction could be 
modeled as a discrete stochastic dynamic service system. 
As shown in Figure 6, Global simulation clock, local sim-

ulation clock and rolling process simulation clock are re-
spectively set to advance the storehouse surface CYCLONE 
model, the CPM model of simulation process of the layers 
and the simulation process of rolling. It can simulate the 
rolling process of rolling compacted concrete in the op-
eration level and the activity level, which ensures the re-
finement and efficiency of the simulation process. To re-
cord the running trajectory of simulation time, the three 
simulation clocks use next-event time advance (Law, 2015).

In each simulation cycle, the monitoring data of con-
crete rolling construction is obtained firstly. The data 
mainly includes concrete property parameters and roll-
ing parameter. After simulation parameter imputation 
and global simulation clock initialization, global simula-
tion clock advances Dt to judge whether event has oc-
curred. If an event occurs, the system will enter the event 
and determine whether it is a simulation event, while cor-
respondingly changing the state of relevant entities in the 
system. Local simulation clock is invoked to simulate the 
layer construction at the time that global simulation clock 
reaches layer activity. The activity level of the rolling pro-
cess is tracked by recording the roller’s position, the num-
ber of passes completed over a specific area, and the com-
paction energy applied. These parameters are continuous-
ly updated and used to assess event triggers, such as the 
completion of a compaction cycle or the need for addi-
tional passes.

Figure 6. Model solving process based on discrete event simulation method and deep learning
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When local simulation clock reaches rolling activity, the 
rolling process simulation clock is invoked and the con-
crete rolling process is simulated. Until rolling process is 
completed, the rolling process simulation system records 
the rolling duration and rolling passes of each grid. When 
local simulation clock reaches quality inspection activity, 
concrete property parameters are reconstructed by IGAN, 
then VC, air content, rolling speed and rolling passes are 
used to calculate each grid compaction degree by IWGO-
CNN. If supplementary rolling is needed, the supplemen-
tary rolling is simulated.

In this paper, t-distribution method is used to solve 
the confidence interval of the construction duration with 
a confidence level of 1 – a. The solution steps are as fol-
lows.

(1)	 Calculate the mean value of simulation duration x
and variance S2:

1
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n

ii
x

n
x

=
= å

( )22 2 2
1 1

1 1 .
1 1

n n
i ii i

S x nx
n n

x x
= =
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(13)

In Eqn (13), x  is the mean value of simulation dura-
tion, xi is the value of each simulation duration, S2 is the 
variance of simulation duration, n  the number of simula-
tion times.

(2)	 Structure pivot:

1n
xT t
S

n


-

-
=  . 	 (14)

(3)	 Shortest confidence interval
For a given a, find b and c  so that the following for-

mula:
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In Eqn (14), a is confidence, a is the lower limit of the 
pivot interval, b is the upper limit of the pivot interval.

When 1 2nb a t a
-

æ ö÷ç ÷=- = ç ÷ç ÷çè ø
, the length of the confidence 

interval is the shortest.

(4)	 Calculate the confidence interval of the construction 
duration

Solve the inequality:
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The confidence interval of the construction duration 
with a confidence level of 1 – a is calculated: 

1 1,
2 2n n
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6. Case study
To validate the feasibility and effectiveness of the simula-
tion model, a  roller compacted concrete dam (HD dam) 
located in Yunnan province, southwest China is selected 
as a case study. 

The proposed simulation model was programmed in 
Python 3.7.10 and Visual Studio 2019. In addition, the deep 
learning module is programmed in python language, and 
the rest of the simulation modules are programmed in 
C++ language. The simulation program interface is shown 
in the Figure 7.

Generally, concrete rolling construction takes the store-
house as the placement unit. Taking Storehouse 10#~11#– 
1468 m~1471 m as an example, the adaptive adjustment 
analysis of the simulation process is carried out. The place-
ment process adopts a horizonal layer organization form, 
and the storehouse is divided into 10 rolling layers. It is 
equipped with 4 paving machines and 9 rolling machines. 
The standard rolling pass of the storehouse surface is stat-
ic rolling 2 passes plus vibrating rolling 6 passes and the 
design rolling speed is 2 km/h.

6.1. Rolling parameters and concrete  
property parameters
First, based on the real-time monitoring system of con-
crete rolling construction, the concrete property param-
eters and rolling parameters of the storehouses before 
the construction of the pouring storehouse 10#~11#–
1468 m~1471 m are collected.

Then, according to the refined simulation process of 
the storehouse surface construction, the storehouse sur-
face construction preparation activities before the first lay-
er construction are simulated, and the simulation clock is 
advanced to the first layer level construction in the store-
house surface construction CYLCLONE model.

When simulating the construction of the first layer, call 
the layer CPM model and the rolling process simulation 
model in the construction simulation program until the 
quality inspection of the last rolling band is completed. At 
the same time, through the rolling process simulation in 
the construction simulation program, the number of static 
rolling passes, the number of rolling passes and the aver-
age rolling speed at each grid in the layer have been ob-
tained. Meanwhile, samples of concrete property param-
eters are enriched based on IGAN. 

The reconstruction result is shown in Figures 8a and 
8b.

The training set has a total of 1064 data, the batch size 
is 64, the epochs is 100, and the training process will it-
erate 1600 times. The loss function curve of the training 
process is shown in Figure 8c. It can be seen from the fig-
ure that the discriminant loss fluctuates around zero after 
50 iterations. The generation loss is stable after 1300 it-
erations and fluctuates around zero. To test whether un-
derfitting of the model occurs, the Kullback-Leibler Diver-
gence (Bishop & Nasrabadi, 2006) and RMSE of the vc and 
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Figure 7. HD dam construction simulation program

Figure 8. Concrete property parameters reconstruction result

a) b)

c) d)
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air content generated samples and the real samples were 
calculated when the epoch is 100, and the Kullback-Leibler 
(KL) Divergence calculation formula is shown in Eqn (18):

( ) ( ) ( )
( )1

log .
N i

KL ii i

p x
D p q p x

q x=

æ ö÷ç ÷ç ÷= ç ÷ç ÷ç ÷çè ø
å  	 (18)

In Eqn (18), ( )ip x  is true distribution, ( )iq x  is approxi-
mate distribution. When epoch is 100, the KL Divergence 
and RMSE of vc are calculated to be 0.0177 and 0.406, re-
spectively, while the KL Divergence and RMSE of Air con-
tent are calculated to be 0.0192 and 0.377, respectively. 
The result shows that the model performs well on the 
training set. At the same time, in order to avoid overfit-
ting, the dropout algorithm is used to randomly set the 
neuron activation function of a part of the hidden layer 
to 0 during each iteration of the training process. In or-
der to verify the generalization ability of the model, a to-
tal of 327 pieces of data in the test set were tested. The 
Kullback-Leibler Divergence and RMSE of each epoch are 
shown in Figure 8d. We can be seen from the figure that 
with the increase of epoch, Kullback-Leibler Divergence 
and RMSE fluctuate occasionally, but the overall trend is 
convergence.

Finally, according to the probability density estimation 
method based on the DPM model, the probability density 
function of the reconstructed VC value is determined as

2 2 2 2 2
1 1 2 2 3 3 4 4 5 5( ) 0.3214 ( , ) 0.0348 ( , ) 0.3214 ( , ) 0.2876 ( , ) 0.0348 ( , )f x N N N N N         = + + + +

2 2 2 2 2
1 1 2 2 3 3 4 4 5 5( ) 0.3214 ( , ) 0.0348 ( , ) 0.3214 ( , ) 0.2876 ( , ) 0.0348 ( , )f x N N N N N         = + + + +  , 

where 
( ) ( ) ( )1

1 1 1 1, ( | 0.031, 0.003 ) |172.00,153.823 ;N Gamma     -= -  
( ) ( ) ( )1

2 2 2 2, ( | 2.202, 0.027 ) |19.50,15.359 ;N Gamma     -= -  
( ) ( ) ( )1
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4 4 4 4, ( | 0.638, 0.003 ) |154.00,20.442 ;N Gamma     -= -

( ) ( ) ( )1
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the probability density function of the reconstructed air 
content value is determined as:

2 2 2 2
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6.2. Compaction degree calculation
Firstly, the prediction model is trained based on the exist-
ing monitoring data to obtain the optimal CNN hyperpa-
rameters. The total sample is 256 data, 70 data are ran-
domly selected as the test set, and the others are used as 
the training set. Set the epochs of CNN to 100, the pop_
size of IGWO to 50, and the iterations of IGWO to 100 for 
training. After optimization, the batch size, number of ker-
nels, and kernel size are obtained as 6, 32, 2. The test set 
prediction results are shown in the Figure 9a.

In order to analyze the validity and superiority of the 
model, as Figure 9b shows, this paper compares and ana-
lyzes the algorithm in this paper with SVR, CNN, and Ran-
dom forest. By comparison, it is found that IGWO-CNN is 
better than other methods except that the maximum ab-
solute error is larger than that of Random forest, and the 
overall evaluation performance is better. Among them, the 
R2 of IGWO-CNN is 0.8596, while the R2  values of SVR, 
CNN, and Random Forest are 0.779, 0.8123, and 0.8498, 
respectively. By examining the MAE, it can be observed 
that the proposed model still outperforms the other three 
models. The MAE of IGWO-CNN is 0.3491, which is the 
smallest among the four methods. The RMSE of IGWO-
CNN is 0.4235, which is the smallest. Furthermore, the MSE 
performance of the IGWO-CNN model is also better than 
that of the other three models, which is 0.1794.

Then the IGWO-CNN model is called to obtain the 
compaction degree of the first layer after the initial roll-
ing, as shown in Figure 10.

The calculated layer compaction quality standard ratio 
is 93.73%, which does not meet the qualified ratio of the 
compaction quality standard in the layer (95%). Supple-
mentary rolling is needed, so the supplementary rolling 
activity is added after the last quality inspection activity of 
the CPM model. Next, calculate the duration of the supple-
mentary rolling process. Consider the area and compac-
tion quality of each unqualified area, and determine the 
priority of the area that needs to supplementary rolling.

As shown in Figure 11, the unqualified areas A1, A2, A3, 
and A4 have larger areas and lower compaction degree, so 
the unqualified areas A1, A2, A3, and A4 need supplemen-
tary rolling. Since the layer is equipped with 9 roller, one 
roller is arranged for each unqualified area.

Assuming that at the end of the first rolling of the lay-
er, the roller are all located at the end of rolling bands. The 
calculated distances between the roller and the nearest 
end of the supplementary rolling area are 47.15 m, 6.52 m, 
119.36 m and 50.99 m, respectively. At the rolling speed of 
2 km/h, the transition time to A1, A2, and A3 is 1.41 min, 
0.20 min, 3.58 min and 1.53 min, respectively.

Finally, the IGWO-CNN model is called, and a trial al-
gorithm is used to determine that at a  rolling speed of 
2  km/h, areas A1, A2, A3, and A4 need to add vibrating 
rolling 1 pass plus static rolling 1 pass, vibrating rolling 
1 pass, vibrating rolling 1 pass plus static rolling 1 pass 
and static rolling, 2 passes respectively. According to the 
maximum length and maximum width of the unquali-
fied area, the rolling process simulation was carried out, 
and the rolling duration of the area is 1.76 min, 1.38 min, 
1.59 min, and 2.16 min, respectively.

After the simulation of the supplementary rolling pro-
cess is completed, the IGWO-CNN model is called again to 
calculate the compaction degree of the layer, and the re-
sult is shown in Figure 11. Although area A2, A3, and A4 still 
have grids that compaction degree has not reached 98%, 
the layer compaction quality standard ratio has reached 
96.78%, and there is no need for supplementary rolling. 
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Calculate the sum of the transition and rolling time of area 
A1, A2, A3, and A4 respectively, the longest time is the sup-
plementary rolling duration of the entire layer, so that the 
layer supplementary rolling duration is 5.17 min. Accord-
ing to the average value of each grid compaction degree, 
the average compaction degree of the first layer is 98.66%.

6.3. Construction simulation result

Through the above cycle, until the simulation of the last 
layer of the storehouse surface is completed, the supple-
mentary rolling duration and the average value of com-
paction degree of each layer is obtained as shown in Ta-

Figure 9. Compaction quality evaluation results

Figure 11. Layer compaction degree after supplementary rolling

Figure 10. Layer compaction degree after initial rolling

a) b)
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ble 4. Among them, the 6th and 10th layer construction 
simulation did not carry out supplementary rolling adjust-
ment.

Table 4. Storehouse 10#~11#–1468 m~1471 m simulation result

Layer 
number

Supplementary rolling 
Duration (min)

Mean value of Compaction 
degree (%)

1 5.17 98.66
2 4.69 98.95
3 7.92 98.67
4 4.49 98.79
5 3.90 99.17
6 / 98.19
7 3.29 98.46
8 4.64 99.60
9 4.41 98.87
10 / 98.11

Note: “/” means no supplementary rolling.

7. Discussion 
The effectiveness of the proposed simulation model for 
the storehouse surface in the schedule analysis is verified 
by comparing the construction duration obtained by the 
simulation with the actual construction duration. HD dam 
is divided into ten construction areas, this paper takes the 
typical 10 storehouses in construction area 1 as an exam-
ple. The construction time lasted from 15:45 on June 30, 
the fifth year of construction of the project to 17:26 on De-
cember 24, the fifth year of construction of the project. Ex-
cluding the interval between storehouses, the total actual 
construction duration of the storehouses is 798.58 hours.

In order to explore the influence of the compaction 
quality on the simulation accuracy, this paper conducts 
a  refined analysis of the simulation modes 1 and 2. The 
details are shown in Table 5. 

Simulation modes 1  represents the simulation mode 
without considering the compaction quality, in contrast, 
mode 2 considers the compaction quality. To measure the 

degree of this deviation, define the deviation rate:
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In Eqn (19), n  is simulation times, in this simulation 
n = 100, i

sT  is the construction duration obtained by the 
ith simulation, Ta is actual construction duration, Dn is the 
deviation rate of construction duration after n simulations.

Based on the simulation results in Table 5, it can be 
found that the deviation rates of the two simulation 
modes show a  downward trend as a  whole. The reason 
is with the progress of the construction process, the per-
ception of data continues to increase, the sample size of 
construction data continues to increase, and the estimated 
construction parameter distribution is closer to reality. At 
the same time, the deviation between the simulation con-
struction duration and the actual construction duration is 
gradually reduced, which proves that the simulation accu-
racy has also been correspondingly improved.

Table 5 shows the simulated construction duration and 
actual construction duration of the typical 10 storehouses 
in construction area I. Except for the second storehouse 
in simulation mode 1 and the third storehouse in simula-
tion mode 2, the 95% confidence interval of the simulation 
construction duration of all storehouses includes the ac-
tual construction duration, which proves the effectiveness 
of the proposed simulation of roller compacter concrete 
construction. Specially, the deviation rate of third store-
house in simulation mode 2 is 9.21%, it is larger than sec-
ond storehouse’ deviation rate which is 8.98%. Analyzing 
the causes of the above two phenomena, it is not difficult 
to find that these storehouses are in dynamic stage I, since 
construction area I is the first placement area of the entire 
roller compacter concrete dam project, construction ma-
chinery and personnel are still in the construction adapta-
tion period, and the construction conditions of the store-
house surface change frequently. The construction condi-
tions in the early stage of construction are unstable, so the 
simulation results will be biased. With the progress of the 
dam construction progress, the proficiency of construc-

Table 5. Typical 10 storehouses duration comparation

Storehouse
Real 

duration
(h)

Simulation duration of mode 1 Simulation duration of mode 2

Mean
(h)

95% confidence intervals Dn  
(%)

Mean
(h)

95% confidence intervals Dn  
(%)infimum (h) Supremum (h) infimum (h) Supremum (h)

1# 137.13 * * * * * * * *
2# 90.36 87.13 84.87 89.39 9.86 88.66 86.64 90.68 8.98
3# 72.04 73.73 72.02 75.44 9.26 73.79 72.10 75.49 9.21
4# 68.17 69.35 67.84 70.86 8.57 68.44 67.02 69.85 8.26
5# 81.89 81.52 79.93 83.10 7.86 82.03 80.54 83.51 7.18
6# 66.51 65.45 64.27 66.64 6.90 66.92 65.78 68.06 6.85
7# 81.38 82.88 81.25 84.51 8.44 81.26 80.16 82.36 5.49
8# 58.05 58.92 57.92 59.92 7.58 58.78 57.71 59.85 7.43
9# 70.67 70.29 69.18 71.40 6.01 70.29 69.45 71.14 4.91
10# 72.38 72.29 71.24 73.34 5.89 72.86 72.30 73.43 3.22
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tion operations and management continues to improve, 
and the overall construction conditions tend to be stable. 

The above analysis shows that the simulation model 
considering compaction quality can improve the accuracy 
of construction simulation; at the same time, it also shows 
that by providing sufficient simulation parameters, the es-
tablished refined simulation model for storehouse surface 
construction can accurately reflect the real construction 
process.

8. Conclusions and future work
Construction schedule and quality are major concerns for 
construction manager. This research developed a  deep 
learning based simulation model which could analysis con-
struction schedule and quality, Simultaneously, take con-
crete rolling construction as an example to verify the su-
periority of the model.

The contribution of this study is accurately evaluating 
compaction degree of the layer, which can be integrated 
into the RCC construction simulation program. First, the 
rolling process monitoring data is reconstructed by IGAN 
methods, and then a compaction degree analysis model 
based on IGWO-CNN is proposed. Finally, engineering ex-
amples are used to validate the model’s simulation perfor-
mance, and the results are compared to traditional simu-
lation without considering compaction quality. The main 
achievements of this paper are listed as follows:

(1)	 Based on the study of monitoring data of concrete 
property parameter, a IGAN method is used to ex-
pand the concrete performance parameter sample 
to provide sufficient data for the simulation pa-
rameter update.

(2)	 A compaction evaluation model for dealing with 
complex nonlinear mapping relationships is pro-
posed. Result shows that IGWO-CNN performs 
with the higher accuracy.

(3)	 To simulate the project’s schedule, a construction 
schedule simulation method based on the roller 
compacter concrete construction real-time mon-
itoring system is built. The compaction degree 
analysis model is integrated into the roller com-
pacted concrete construction simulation model, 
and it allows for an effective compaction degree 
analysis and a construction schedule simulation for 
the roller compacter concrete construction, which 
allows for an accurate analysis of the storehouse 
compaction quality and the efficient development 
of the construction schedule.

As far as we know, this is a good application for de-
tailed analysis of the influence of compaction quality fac-
tors on the simulation process in the simulation of roll-
er compacter concrete construction. In future research, 
some enhancements could be made in our research. On 
the one hand, more possible impact factors such as roller 
compacter concrete compaction stiffness on compaction 
degree could be further considered to increase the pre-

cision of the simulation model. By collecting more real-
time monitoring data, we can more comprehensively ana-
lyze the impact of various factors on compaction quality 
and construction progress, thus improving the accuracy of 
compaction quality evaluation and construction progress 
simulation models. On the other hand, more integrated 
simulation models could be created to analysis the compli-
cated relationships between multiple project performance 
parameters (such as cost, safety and schedule) and crucial 
impact variables (such as human behavior, equipment effi-
ciency and weather). Furthermore, although the proposed 
simulation model can substantially enhance concrete con-
struction quality evaluation and simulation accuracy of du-
ration, its reliability and accuracy are heavily reliant on the 
availability and quality of data, so new data mining tech-
niques should be used to improve computing efficiency.
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