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Abstract. The paper discusses the location problem of production plants exemplified by concrete mix production plants
(I** model), taking into consideration the demand variability in time (II" model), and the analytical method of the
localization of industrial plant with a considerable amount of transportation costs of concrete mix and concrete aggre-
gate (III"! model). Changes in demand for concrete mix in time t lead to changes in plants’ location. Assuming that there
exist concrete mix production plants, one should make a simulation of demand for concrete mix which occurs at the
time t. The presented models are the essential generalisation of the problem discussed in the earlier papers. The matrix
of construction costs must be always defined as a four-dimensions vector (the set of four values): the production plant
construction cost, the cost of plant’s modernisation (which is the result of changing demand for concrete mix), the cost
of liquidation (dismantling) of a production plant or the cost of moving of an existing production plant. Three new
generalised notions concerning the classical linear programming (mixed programming, mixed programming with time
and two-optimised conjugate linear system) have been introduced. The algorithms describing the above-mentioned mod-
els of location changes were suggested, and programmes solving the location problems were prepared in PASCAL.
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programming, conjugate programming.

1. Introduction

The location problem of production plant is one of
the classic optimization methods and is widely publicised.
Let us just name such new works as Lu, Anson, Tang
and Ying [1-4], Zayed and Halpin [5]. In [2] newly de-
veloped approaches for construction simulation have been
used to model the one-plant-multisite ready mixed con-
crete (RMC) production system, validated by real-life
operations data in Hong Kong. They used the
HKCONSIM — a computer system for simulation model-
ling and analysis of Hong Kong’s RMC production op-
erations was developed in-house. The system is suitable
for the resource provision planning and the production
planning of a RMC plant, so as to meet given demands
at a number of sites for concrete over a working day. In
[5] a simulation is applied to concrete batching opera-
tions to analyse alternative solutions and resource man-
agement. Data are collected to define activity durations
for the plant. A simulation model is constructed for the
plant using the MicroCYCLONE simulation system.
Based on sensitivity analysis, management tools are con-
structed to help the decision-maker. The problem of
building location is discussed in Warszawski and Peer

[6]. Finally, the issue of auxiliary production plant loca-
tion, which is the subject of the present paper, is dis-
cussed in numerous recent works, eg Warszawski [7, 8],
Warszawski and Ishai [9], Celinska-Mystaw and
Kaplinski [10], Kaplinski [11], just to mention the most
significant ones. Since concrete-mixing production plants
are only temporary by nature (they must be located within
a short distance from construction sites, where building
works are carried out only at certain periods), there
emerges a necessity of dynamic location. The models
formulated and used in [12—14] and presented below are
based on the classic location model related to the prob-
lem of linear and integer programming [15-21], combi-
natorial optimization [22], discrete optimization [23, 24]
and combinatorial theory [25]. The papers [12—14] con-
tain computational examples. In this paper three essen-
tial models, from mathematical point of view, are pre-
sented.

In the I model a problem of finding a conditional
minimum of the linear function of mxn+m variables,
where mxn of variables are continuous ones and the
remaining m are zero-one variables is considered. The
constraints are linear inequalities. There is a global solu-
tion of the problem in the sense of general algorithm.
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The search for such a solution with the so-called method
of decomposition has not brought an effective calculat-
ing method to Systo [23, 26] yet. If we assume the val-
ues a sequence of zero-one variables, a classic transpor-
tation problem is obtained with zero-one variables. The
solution of thus formulated problem can be found by two
methods:

* Searching for the method directly solving the set
task. It would be an interesting solution, but it is
apparently very difficult (if possible at all). Provided
the optimization method is skilfully found, the re-
sults are quickly obtained.

» Treating the set task as the total of numerous prob-
lems PL with variation number indexing. This, in
turn, can be done in two ways: (a) by solving the
task with zero-one variables and, subsequently, the
transportation task (that procedure was used when
algorithms of solutions in the respective models of
the present paper were formed), or in the reverse
order (b).

The procedure in 2(a) will be undoubtedly effective
(however, not very spectacular, especially with a large
number of zero-one variables), if while calculating the
values of zero-one variables, all their possible arrange-
ments are examined. That is where we have to face the
problem of computer’s work time. The models described
in the paper, reflecting the technical and economic is-
sues are associated with different solution algorithms.
Certain variants require examining a bigger number of
possibilities, others smaller. The mixed programming
task, described in the I* model - merges combinatory
method and the method of transportation problem solv-
ing.

2. I** model (mixed linear programming)

As one may know, the transportation problem is an
example of linear programming with continuous variables,
and question of distribution is an example zero-one pro-
gramming. The problem of location discussed in this
paper is an example of mixed programming, and com-
bines the two questions mentioned above. It is a task of
linear programming where its variables are binary and
continuous. Moreover, it is a combinatory problem.

2.1. Mathematical formulation

There are m industrial plants, which produce goods
for n customers with demand for dj units, j =1, 2, ..., n.
The plant construction involves necessary costs for
realisation the territorial investment c, (¢, = 0) and its pro-
ductivity p; (p,= 0). Unitary transportation cost of a unit
of a product from a plant i to a customer j is a; We
want to select such a plant and its location so that the
total cost is minimal and the demand d. is met. If Vi
denotes the size of freight from the production plant i to
a customer j and if x; denotes the choice or rejection of

a production plant, the problem of location is as fol-

lows.
Data:

m — the number of candidate sites for the plant location,

n — the number of potential customers,

d]. — the number of units required at destination j, j = 1,
2, .., N,

a; —the transportation cost per unit of a product from
production plant j to a customer j,

¢; — the construction cost of the i-th production plant,
i=1,2, .., m(c 20),

p; — productivity of the i-th production plant, i = 1, 2,
. (p; = 0),

y;; — an amount transported from production plant i to a
customer j,

x, — a binary variable which denotes for x, = 1 the choice
of i, while for x, = 0 the rejection of a production
plant.

The solution of the location problem is based on
finding the minimum of the function

nm n n
2= Yay;+ XX (1)
i=l j=1 i=l
with the following constraints
m
Eylj=dj’ j: 1, 2, ey N, (2)
i=1
L .
Yyis<pixi, i=1,2, ., m, (3)
Jj=1

where y; 20 are continuous variables, while x; —
binary variables.

It may occur that certain x, will equal zero. It means
that some locations were not selected. In order to obtain
a more general model, ie the one in which the number
of plants is smaller or the same as that of possible site,
one ought to assume that the number of production plants
z, (r=1,2, .., k) to locate equals k and it is smaller or
the same as m. In practice it means that we have any
large number of locations and accordingly smaller num-
ber of plants. That assumption can be realised by as-
suming that certain p, equals zero and considering the
permutations of the set {z, z,, ..., z, } (Where certain z,
are fictions plants of production capacity which equals
zero) or otherwise, which brings the same result, a set
{1, 2, ..., m}, but practically it is a set of k-element varia-
tions without m — element set {1, 2, ..., m} repetitions,
since the elements (production plants) i in permutation
of the value p, = 0 do not exist. Let us assume then that
we own k production plants z, (r = 1, 2, ..., k) of ¢,
(r=1, 2, ..., k) production capacity, where k — m. A set
of mG all k-element variation is defined without {1, 2,
..., m} set duplications. For a variation (i, i,, ..., ;) p; = ¢,
let us assume i =i, and p,= 0 fori ¢ {i,, iy, ..., i.
Since all the permutations are considered in the model,

it does not matter how the set is arranged {i , i,, ..., i,}.
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In practice, as one can see in the following example, not
decreasing the generality, we assume as {i}, i,, ..., i;}
the set {1, 2, ..., k}, ie we assume that the first
k-elements of p, is different from 0, while for other
m — k indexes {k+1, k+2, ..., m} p, equals zero. We
m!
shall then obtain 7 specimens of the model de-
(m=k)!

scribed above, however, in any case it will be a classic
transportation task. In order to achieve an effective, pos-
sibly simple solution to the discussed model, we shall
consider its three exemplifications.

2.2. Problem solution

The cost of construction ¢, of i-th plant, i = 1, 2, ...,
m (c; = 0) consists of two elements: costs ljk, k=1, 2,
., m,, associated with land acquisition (purchase, leas-
ing) and its development (fitting power mains, plumb-
ing, telephone lines...), environmental costs, ...; b, costs,
s =1, 2, .., m, which are associated with the construc-
tion and utilization of the building, ... (variant B). There-
fore:

mij mip

¢ =Dl + Db

r=1 s=1

i=1,2, ... m. 4)

Production capacity pi of the i-th production plant,
i=1,2,..,m(p,= 0), may depend on the location (it
may be appropriate only for that location — variant B), it
may be independent of location (variant C) or it may be
constant (variant A) the same as p.

Therefore the task has three forms:

Variant A. We assume that the located plants are
typical, ie the cost of investment is identical to that of
any other plant (c, = const, p, = const, i = 1, 2, ..., m).
The problem is to locate a few plants of certain (iden-
tical) production capacity and identical cost of construc-
tion. Considering that variant is interesting because of
its realisation by means of a computer. In fact, the pro-
gram operates over a relatively short period of time,
which makes it possible to optimise the location of a
greater number of industrial plants.

Variant B. The second assumption relies on a
model, in which the location site is associated with the
cost of construction (eg both land purchase and environ-
mental issues seriously affect the costs of construction).
However, the cost of investment and operating cost is
entirely associated with the location. It means that the
industrial plant z can only be built on the site k. Vast

majority of costs (significant value /., i =1, 2, ..., m,
r=1,2, .., m,; compared with b, = const for i = 1, 2,
v m., s = 1,2, .., m,) is associated with a location

while b, = const, s = 1, 2, ..., m,. That problem also
has its economic solution by means of a computer be-
cause of a shortage of time. The above distinction, be-
cause of a computer algorithm, is not essential. In this

case the algorithm does not actually differ from the one
of the previous solution (variant A).

Variant C. At last the most general model where
each industrial plant z,, » € {1, 2, ..., m} of certain
investment costs and certain production capacity can be
constructed on any site i. The cost of construction and
its production capacity are independent of its location.
The algorithm is not much more complicated while its
realisation on a computer is distinctly longer. In practice
it was calculated that 10 is a maximum number of loca-
tions and industrial plants.

The above distinction is very important from the
technical, economic and ecological point of view. One
should be aware of that when using a computer. All vari-
ants of the solution of the I** model are presented in
Table 1.

2.3. The description of solution algorithm

Variant A is simple in such a way that the algo-
rithm does not require permutations of variables stand-
ing for the industrial plants. It is limited to generating
such binary digits, which when extended by the length
m have k number of ones and (m — k) zeros. Thus the
solution of the transportation problem keep recurring as
many times as there are k-element combinations of
m-element set. The loop checking the values of the des-
tination function of the transportation problem is realised

m m
k times and not k k! times. In case of bigger

values of k program’s operation is dramatically short-
ened (k! times).

Variant B differs from variant A only in the charac-
ter of the initial data, concerning the cost of the plant’s
construction (values of c)).

Variant C as the most general and the most univer-
sal is realised k! times longer — it is the time required to
designate all the permutations for the respective combi-
nations of location sites of the industrial plants.

There are m location sites, £ industrial plants of
production values p,, i = 1, 2..., k, (p, 2 0) of construc-
tion cost ¢, i = 1, 2..., k, (¢;= 0). Then in the transpor-

tation task we assume p, = p,,, =..=p,= 0 and
Cor1™ Cpag = = Cp = 0.

The other data ie n, dj, a.fori=1,2,..,m,j=1,
2, ..., n remain invariance in all algorithms.

After thus modified matrix p, for i = 1, 2, ..., m for
each combination (variants A and B) and any other varia-
tion (variant C) we solve the transportation problem. If
we assume that the set K of combination (variants A and
B) or the set W of variation (variant C) has w elements,
then for each #-th combination (variation) r = 1, 2, ..., w
we solve the following task:

For the data:

m — the number of industrial plants (location sites) we
want to locate,
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Table 1. Variants of solution of the I* model
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Variant A Variant B Variant C
Pper P50.0....0 P1 P2 s Plo Pitts oo P py gy i, 0,0....0
—— —— Cl15 €2y woes Chs Cht s +o0s Ciy —
< k m—k m—k
s
A PsPsess D5 0,0,...,0 €1, €25 ooy €y 0,0,..,0
— ) —— — ,_Jk
k m—k m-=
2 {15 T2y oo Bt} {15 2y oo ik} 1, 1oy oo Bk
S o | where where where
~—
g r-éﬂ 11<ip<...<Iy, 11<ip<...<I}, 11<0r<...<Ij.
@ . | we assume: we assume:
§ i |pi=p, ci=C pii=0, ¢;:=0
% N, for ie {il’ iz, veey ik}’ for i¢ {il’ iz, ooy ik},
—
£ “lp;=0,¢; =0 the others are the same
T © T ;
% for ig {ll, 1y oy lk}
We assume
I R 0, c;:=0
g for ig {il, Iy, wers lk}
~§ We create permutation
§ - - i\, i, ..., iy of the set {i}, ia, ..., ix},
> and we assume
Py =y €T ey
and p;:=0, ¢ =0 for ig {iy, i», ..., iy}

n —the number of potential customers,

d. — the number of units of the product in demand from
the j-th customer, j = 1, 2, ..., n,

a; —a unitary cost of transport of a unit of a product
from the industrial plant z to a customer j,

p; — the productivity of the i-th industrial plant, i = 1, 2,
o m, (p;20),

y,; —a size of the freight from the industrial plant i to a
customer j,

find the function minimum

m n
7 =X X a;yi (5)
i=1j=1
with these constraints
m
Eylj=d]’ J= 17 27 Ml n; (6)
i=1
n .
Eylj Spi, 1= 1, 2, ey ML (7)
.

For the found function minimum z we find the value

®)

where x|, x,, ..., x, is a binary digit defining the combi-
nation {i,, i, ..., {,} ie x, :=1, for i € {i,, iy, ..., i,} and
x, .= 0, for ig{il, iz’_ oy L) o '

The required optimum solution is the one in the
form:

min  (z,+72).
t=1,2,...w

(€)]

3. I1"Y model (Production plant location with func-
tion of time)

In I8 model the solution involved the situation static
in time. Such a solution of the question with a complete
algorithm, effective program and examples is not found
in other papers although they are fairly numerous.
Warszawski in [7] discusses the question of location,
offering an interesting mathematical model, however, he
does not suggest an effective algorithm of the question
solution. Moreover, in none of the above-mentioned pa-
pers offers a comprehensive cost analysis associated with
the construction, modernisation or liquidation of the plant.

Since the concrete-production plants are temporary
by nature, there appears a need of a dynamic location.
The changes concerning the demand for concrete mix
force the changes in plants’ location. It may happen pe-
riodically or there may be a possibility of predicting the
demand for concrete for many years ahead. The changes
of location in time force multi-variant location changes.
The above issues are the subject of the I1I"d model.

3.1. Mathematical formulation

Let’s assume that we have m concrete mix plants,
where at any moment of time ¢ (f€ 7) concrete mix is
produced for n customers at the demand of d(¢) units,
j =1, 2, ..., n. After a time At, the demand for the quan-
tity of concrete mix will be a subject to change; it may
increase or decrease. The company which owns a plant
faces the option of constructing new plant, modernisation,
moving it elsewhere or liquidation. All the above-men-
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tioned decisions involve costs, which are necessary to
carry out the investment c(?) (c(#) 2 0) and provide pro-
duction capacity p(f) (p(t) = 0). The cost of transport-
ing a unit of a commodity from a plant i to the customer
J amounts to ai].(t). We want to select such a plant and
its location so that its total cost is minimal and demand
d(f) satisfied. If we assume that yl.j(t) is the capacity of
the load from a plant i to a customer j and if x(¢) stands
for the selection or rejection of a plant, the question of
location can be described as follows:

As far as a mathematical formulation of the prob-
lem is concerned, it is necessary to denote the param-
eters of the system and the decision variables.

The data:
m  — the number of candidate sites for the plant loca-
tion,
m, m,— the number of industrial plants,
n — the number of potential customers,

dj(t) — the number of units of concrete mix [m°] required
at a destination, j =1, 2, ..., n, teT,
al.j(t) — the cost [PLN/m?] of transport per unit of a prod-
uct from a production plant i to a customer
j, teT, (10)
c/(t) — the cost of construction [PLN] of the i-th pro-
duction plant, i = 1, 2, ..., m, (c, (£)20),
teT, p(t) — productivity per year [m3] of the i-th pro-
duction plant, reT.
Its decision variables are as follows:
yij.(t) — an amount of a product [m’] transported from a
production plant i to a customer j, t€ 7,
a binary variable which denotes the choice of i
for x(¢) = 1, while for x(#) = 0 — the rejection
of a production plant, The solution of the loca-
tion problem is based on finding the minimum
of the function

x (1) —

() =X Ya;yi )+ X ci(0)x;(t) (11)

i=1j=1

with the following constraints:

m
Zlyij(t)=dj(t), Jj=1,2,.,ntl, (12)
1=

n
Yy pix(6), 1= 1,2, ,m €T, (13)
J=1

where yij(t) 2 0 are continuous variables, while x(f) —
are binary variables.

For the salve of clarity, the numbers m and m; will
be treated as identical, assuming that there are m — m,
fictional production plants, for which p(r) =0, i = 1,
2, ey m—my,

The function of purpose (11) denotes the total of
costs associated with the transport of concrete mix from
a production plant / to a customer ;j in a period of time
t and the costs associated with the construction,
modernisation or moving of a plant (in a discussed pe-

riod of time f). The equations (12) define the constraints
that the capacity of suggested production plants is higher
(equal) than the demand of customers for concrete mix
(in a period of time ), ie concrete mix will be delivered
to all the customers (in a period of time ¢). With a fixed
t a similar model is obtained to that (or those) described
in the I* model. Thus, we are not going to describe that
(stationary) model again, the more so that at the present
assumptions the solution of the problem with fixed ¢
depends upon the solution in a previous period z—Af,
where At (At 2 0) is a period of time (or its multiple)
between the subsequent decisions concerning the produc-
tion plant location. Practically, it is assumed that bound-
ary conditions (and all data generally) will change in time
in a discreet way. The time range 7 is divided into time

sections At = <t ,, t>, foru =1, 2, .., o, so that

IKZJ <t,,, t,=T. The data described above have the
u=l,2,..., o

form of a matrix with one more indicator u, u=1, 2,
..., 0. About the quantities al:].(t) the matrix has the
3-dimensional form al.j(tu), with dimensions of mxnxo,
i=1,2, .,mj=1,2, ., n u=1,2, .., o The
problem is solved at the moment ¢, with the use of one
of the models described in the I** model. As a result, we
obtain an optimal solution in the form of arrangement
variation 7 (i), u = 1, 2, ..., o with the minimum value

u-1°

of z(t,)= {r;in (z,(t,)+ 7(t,)), where w is the num-
r=1,2,..., w

ber of variations (z,(,) is the value of the function of
purpose in a classical PL for the r-th variation, while

m

z'r (t,) =Y, c;(t)x;(t) is a global value of investment on
i=1

the construction (modernisation) of production plants.

3.2. General description of algorithm solution

The main idea of solving the problem is based on
multiple use of the algorithm described in I¥* model with
the proper choice of values ¢(z,) of the data (10). Tem-
porarily, in order to simplify the form, the following
assumptions are made: ¢, shall be identified with « and
it will denote a,(i,/) instead of a[j(tu), ¢, (i) instead of
c/(t,) etc. In the discussed model the cost of construction
of a production plant can have varied character. It can
be the construction of a new production plant, develop-
ment of the existing plant, the change of location of al-
ready existing plant or liquidation of the production plant.
Hence, the matrix of construction costs must be on all
occasions defined as a four-dimension vector (the set of
four values): ¢, (i)=(o (i), B, (0), v,(i), 8,(7)), where i =1,
2, ...,m, u=1,2, .. o and the co-ordinates of the
vector signify respectively o, (i) — the production plant
construction cost, (i) — the cost of plant’s modernisation
(connected with changing demand for concrete mix,
v,(i) — the cost of liquidation (dismantling) of a produc-
tion plant, § (i) — the cost of change in location of an
existing production plant.
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Let m denote any variation of production plant lo-
cation layout, m, denotes variation of production plant
location layout at the time u, 7 (i) — the value of varia-
tions for the i-th site at the time u, or a production plant
established in on available site i. Then, the following
cases may be distinguished:

ifnw ()=n_ () and p (@) 2p @O,

then we assume ¢ (i):=0, (14a)
it (i) #n ., () and p () <p .,

then we assume ¢ (i):=p (7 (i), (14b)
it (i) #n () and T ()=0 and 7 (i) #70 (j)
for every j#i,

then we assume ¢ (i):=o (7w (1), (l4c)
if t (i) #n () and T (i)#0 and 7 (D)=m (})
for some j#i,

then we assume ¢ (i):=8  (m (), (14d)
it () #m
for every j#i,

then we assume ¢ (D):=y . (7 (D).

(i) and m _ (=0 and 7 _ (j) #1 (i)

u+l
(14e)
The above cases are illustrated in Table 2.

Table 2. The illustration of variations of production plant loca-
tion

() | 72) | n(3) | ©(4) | 75) | m6) | n(7) | ()

I, 1 0 4 2 3 0 0 5

Tur| O 5 3 2 4 0 6 0

(14e) | (14d) [ (14d) | (14a) | (14d) | (14a) | (14c) | (14d)
or or
(14b) (14b)

First, the initial stage is carried out:

(the initial stage): c (i):=a (i), i=1,2, .., m, u=0.

Each phase of transition from the state at the time u
to the state at the time u+1 takes place in three stages.
At the initial moment of the algorithm (at the start) we
have:

Stage 1 is based on solving the problem of location
for:
¢ ,+1(H:= 0 in the case of p (i) =p ., @),
¢ (=B ., (m, (i) in the case of p (i) <p , () for
the location at the time u (variation T).

In stage 2 we solve the problem assuming the prin-
ciple (14 a-e) and we select the best solution of those
obtained in stage 1 and stage 2. Notice that stage 2 is
needed (has an essential influence on the problem solu-
tion) when the modernisation of existing production plants
is unprofitable.

The algorithm suggested in the paper is based on
multiple application of the program used in the I model,
which can dynamically find the optimum location, supple-
mented with a stationary sub-programme which calcu-
lates the total cost of transport in the previous stages.

3.3. The cost of production plant construction

Construction cost ¢(z,), i = 1, 2, ..., m, (c(t,)20)
of the i-th production plant, expressed with four values
in our model, consists of, as in [4] two components: costs
L), k=1,2,.. m,, associated with land acquisition
(purchase, rent) and its development (sewage, electric-
ity supply, telephone installation, etc), ecological costs
etc; costs b,(¢), s = 1, 2, ..., m, connected with the
construction and exploitation of the production plant etc.
Because of diversification of variants resulting from the
type of investment the above decomposition of costs re-
fers only to the construction of a new production plant.
The other cases as well as a detailed analysis of the above
costs is omitted here considering the character of the
paper.

Thus

mjy mip
Ci(tu)zlir(tu)'l' Elis(tu)’ i=12,..,m (15
r=1 s=1

As mentioned above, the cost c(z,) is perceived as
a four-dimension vector ¢ ()=(a (i), B, (D), v,(i), 8,()),
inwhichi=1,2,...,m, u=1,2, .., o, because of the
assumed stationariness in respect to time in the model,
indices were written in a different way. Leaving out the
question of time, the vector ¢, has the form of (a, B,

¥y 8)-

4. II1'Y model (two-optimised linear conjugate system)

In this model we optimise the objective function
depend on
* a location of potential customers of concrete mix
and
+ a location of open casts of concrete aggregate.
We obtain an example of two tasks of linear pro-
gramming associated with each other. Such a composed
task is called by the authors two-optimised linear conju-
gate system.

4.1. Mathematical formulation

Let us assume we have m concrete mix plants, where
at any time moment concrete mix is produced for n cus-
tomers. For the production of concrete mix we use v
kinds of concrete aggregates originating from / open casts
(sources). The problem of location can be described as
follows.

Data:

m, m, — the numbers: m — of candidate sites for the plant
location, m, — of industrial plants,

n — the number of potential customers,

dj(t) — the number of units of concrete mix [m?] re-
quired at a destination, j = 1, 2, ..., n, teT,

aij(t) — the cost [PLN/m3] of transport per unit of a
product from a production plant i to a customer
j, teT,
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c(t) — the cost of construction [PLN] of the i-th pro-
duction plant, i = 1, 2, ..., m, (c, ()20), te T,
p’(¢) — the productivity (per year) [m?] of the i-th pro-
duction plant, i = 1, 2, ..., m, (p'(0)20), t€T,
— the productivity (per year) [m?] of the i-th pro-
duction plant, after using the correction coeffi-
cient of the production power, i = 1, 2, ..., m,
(p; (020), teT,
y;{f) —an amount of a product [m?] transported from a
production plant 7 to a customer j, te€ 7,
x(f) — a binary variable which denotes the choice of i
for x(¢)=1, while for x(£)=0 — the rejection of a
production plant, te T,

)2 0]

/ — the number of open casts (sources of concrete
aggregate),
v — the number of kinds of concrete aggregate used

to the production of concrete mix,

e (t) — the number of units of concrete aggregate [m3]
inopencastk, k=1,2, ..., teT,

b, () — the cost [PLN/m?] of transport of units of con-
crete aggregate of kind s from an open cast k
to a production plant i, k = 1, 2, ..., [, i= 1, 2,
om, s=1,2, ..., v, teT,

w,; () — an amount of a product of concrete aggregate
[m3] of kind s transported from an open cast &
to a production plant i, k =1, 2, ..., L i=1, 2,

Samys =1,2, ..., nv, teT,

A — the coefficient of a share of kind of concrete
aggregate s in concrete mix, s = 1, 2, ..., v,
M+, + o+ A, =100 [%],

W, — the coefficient of a utilization of the production
power of a production plant / in relation to a
kind s of the concrete mix, i = 1, 2, ..., m.

The solution of the location problem is based on
finding the minimum of the function

()= mb(t)+ kr()+ bu(t), (16)
where:
mb(t) — the total cost of the transport of a concrete mix
[PLN],
kr(t) —the total cost of the transport of a concrete ag-

gregate [PLN],
bu(f) — the production plant construction cost [PLN],

and Vi W) (yl.J.ZO, wy,,(£) 20) are continuous variables,
while x, — are binary variables.

The way of solving the problem is based on use the
algorithm described as follows. Similarly as in 11" model,
for every ¢ we generate all values of the coordinate vec-
tor x(¢) and we obtain the system numbers for each we
solve the linear program (the minimum of the function
mb(1))

mb(t)= 3, ¥, a;; (1) y;; (1) (17

i=1j=1

with the following constraints:

m
Zlyij(t)=dj(t), j=12 .. ntT, (8)
=

n
2yiO<pix@), =12 ..,m €T, (19)
J=1

where J’,-j(t) > ( are continuous variables, while x(#) —
are binary variables and p; =u;p; fori =1,2, .., m

(cf. [11]).
We obtain the solution yg(t), xio(t). Next, we
compute the values p (f) according to the equality

pl=3y)). (20)
j=1

We compute the value of the function determining the
cost of the construction of a production plant

bu(t) = $e;0:0). @)
i=1

Next we find the solution of the second linear pro-

\4
gram (the minimum of the function kr(t)= Y kr, ) by

. ) i=1
mean the solving of v component linear programs s for
s=1,2, ..., v,

Il m
kg (1) = 3, 3 by (1) Wi (1) (22)

k=li=1

with the constraints:

]
S () =h,p ), =12, ., m €T, (23)
k=1

3

Wris < e ®, k=1,2,... 1T 24)
1 :

At the end the minimum of the function z(¢) (z(f) =
mb(t) + kr(t) + bu(t)) we find by considering all varia-
tions which determine the systems of variables x (7).
The considered above problem can be fomulated as
one task LP. It suffices to substitute (20) into (23). Then
we obtain the following model of the mixed linear pro-
gramming: Find the minimum of the function (16) with
the constraints (18), (19), (23), (24) (naturally with the
modified notation). However, such a problem is not
soluble by means of transportation method. There is a
LP problem with the matrix A, /i)ty imetyvon)
soluble 2™y times instead of 2™v double transhipment
tasks with suitable mxn, mx[ dimensions. The second
algorithm is most advantageous than the first one.

5. Conclusions

The three presented models of localisation make it
possible to solve the problems of location of concrete
mix production plants of different size and different
organisational and environmental conditions.
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Model I refers to localisation of the concrete mix
production plants where there is considerable influence
of fixed costs on plant functioning costs. This model of
localisation finds its application in small areas as well
as in areas of medium size, where concrete mix produc-
tion plants are characterised as constant objects.

Model II takes into consideration predicted changes
in demand for concrete mix in time on a given territory.
It means that the demand and the territory attended to
will be different in different periods of time. Moreover,
the model takes into account relocation, modernisation
or liquidation (liquidation costs) of a production plant.
The model is applied in the planning of localisation of
concrete mix production plants (mobile concrete-mixing
plants, among others) in big cities and on large urbanised
territories.

Model III considers the case here the functioning
of concrete mix production plants is influenced not only
by the factors mentioned in the previous models (such
as, among others, connections between concrete mix pro-
duction plants and the building sites which consume the
concrete) but also by the environment, ie suppliers. In
this regard, the location problem is solved here by
optimisation of the objective function dependent on the
location of points receiving the concrete mix, the de-
mand, the places where raw materials are obtained and
the amount of concrete mix production. The so-called
two-optimised conjugate linear system is obtained. This
model is applied in large city agglomerations, which do
not have sources of raw materials in close neighbourhood
or in smaller areas, which are considerably remote from
the sources of concrete aggregate.

The presented algorithms of models solving enable
a multidirectional analysis of location problems, which
is also proved by the numerical examples ([12—14]). It
is possible to carry out simulation of different hypotheti-
cal economic and social situations, such as: changes of
transport charges (changes of fuel costs), changes in the
cycle of object realisation, social-political changes, which
may result in increase in the demand for concrete mix
(eg introduction of tax preferences for economic objects
and natural persons who realize building investments),
etc. Versatility of the models allows the designer to de-
cide how to react to the changing surroundings, where
to look for improvements in the activity of a firm or in
logistics, as well as to solve material, equipment and
organisational problems.
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ISPLESTINIS BETONO GAMYKLU ISDESTYMO TIESINIO PROGRAMAVIMO MODELIS
E. Kozniewski, Z. Orlowski
Santrauka

Aptariama gamykly i§déstymo problema iliustruota betono gamykly pavyzdziu. I modelyje nagrin¢jamas betono gamyklos
iSdéstymas nepriklausomai nuo betono poreikio kitimo laikui bégant. II modelyje ivertinamas betono poreikio kitimas
laikui bégant. III analiziniame pramonés gamykly iSdéstymo modelyje ivertintos betono misinio bei uzpildo transportavimo
iSlaidos. Kintant betono poreikiui laikui bégant, kinta ir gamykly iSdéstymas. Esamoms betono gamykloms turi biti
atliktas betono miSinio poreikio kitimo laikui bégant modeliavimas. Pateikti modeliai apibendrina ankstesniuose
straipsniuose suformuluotas esmines problemas. Statybos i$laidy matrica turi biiti sudaryta kaip keturiy dimensiju vektorius
(keturiy reikSmiy aib¢): gamyklos statybos iSlaidos, gamykly modernizavimo i$laidos, kurias lemia betono poreikio
kitimas, gamyklos likvidavimo islaidos arba esamos gamyklos perkélimo iSlaidos. Pateiktos trys naujos apibendrintos
metodikos, susijusios su klasikiniu tiesiniu programavimu (miSrusis programavimas, misrusis programavimas laikui bégant
ir pagal du pozymius optimizuota jungtiné tiesiné sistema). Pasitlyti i8déstymo modeliy aprasymo algoritmai, kuriy
sprendimams parengtos kompiuterinés programos PASCAL programavimo kalba.

Raktazodziai: proceso modeliavimas, iSdéstymo problema, transportavimo metodas, betono misinys, tiesinis
programavimas, misrusis programavimas, jungtinis programavimas.
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