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Abstract. The non-linear mathematical model of the interaction of elastic waves is presented. The conditions of possible 
resonant interaction of periodic waves are described. The method of internal averaging for getting uniformly valid 
asymptotic expansions is used in both, ie resonant and non-resonant, cases. Results of numerical experiments are pre­
sented for the resonant interaction of the elastic waves. 
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1. Introduction 

The wave equation 

2 
Uu - c Uxx = 0, (1) 

models propagation of different types of waves such as 
elastic waves in an elastic string, membrane, or solid, 
sound waves in a gas, electromagnetic waves. The simple 
linear equation is derived using the assumption that the 

perturbations lui are small. It is important that a solu­

tion of mathematical model ( 1) should not necessary be 
small. It is well known that the solution of (I) equation 
is given in the form 

u = <p(x - ct) + \jl(x + ct), 

where <p(x - ct) corresponds to a wave propagation with 

speed c in the positive direction and \jl(x + ct) corre­

sponds to a wave propagation in the negative direction. 
Hence any solution of ( 1) cannot be used to model the 
real wave propagation process [1]. 

The second restriction of the mathematical model 
( 1 ), which is also frequently not taken into account, deals 
with the fact that equation ( 1) describes real world pro­
cesses only for a finite time interval. We again note that 

the linear combination <p + 'If describes a solution of (1) 

for all 0 < t < -too . 

In this paper we derive a more accurate mathemati­
cal model for describing the wave propagation in elastic 
materials and propose a new method for constructing the 
asymptotic approximation of the solution. 

Perturbation methods are widely used for the analy­
sis of wave phenomena [2, 3]. Application of these meth­
ods in the elastic waves theory has many special 

features, thus many works are devoted to this subject 
[4-6]. Our algorithm is similar to the well-known ray 
method [7, 8]. For a list of applications of (1) see [9, 
10]. We note that the method of solving the elastic wave 
interaction problem proposed in [9] cannot be used in 
the case of resonant interaction of periodic waves. The 
main idea of our algorithm is based on a special type of 
averaging operator. Averaging methods are widely used 
in asymptotic analysis (e g [11-13]). The new feature of 
our method is based on application of averaging opera­
tor for functions, which are solutions of obtained aver­
aged equations. Thus we get integro-differential prob­
lems. Such a modification of the algorithm gives us a 
possibility to describe the resonant interactions which can 
arise in such systems. Mathematical modelling of inter­
action of elastic waves is important for some industrial 
applications [14, 15]. 

The rest of the paper is organised as follows. In 
Section 2 we formulate a non-linear one-dimensional 
mathematical model of propagation of elastic waves. 
The analysis of some simplified models is presented in 
Section 3. We are mainly concerned to give a sampling 
of specific problems that are important in the asymptotic 
analysis of differential equations involving a small pa­
rameter £ • In Section 4 we present a method of averag­
ing and construct asymptotic approximation, which is 

uniformly valid for t = a(.;). Using this method we 

obtain the averaged system of integro-differential equa­
tions. Conditions describing a possibility of resonant in­
teraction of waves for periodic solutions are presented. 
The results of numeric experiments are given in Sec­
tion 5. 
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2. Mathematical model 

Let's consider the problem of wave propagation in 
two-dimensional elastic materials. We assume that dis­
placements do not depend on the y coordinate and there­
fore the mathematical model will be one-dimensional. 
Restricting our attention to the axial displacements along 
x andy directions, we have equations [16]: 

(2) 

Here p is the density of the material, cr and 't are 
longitudinal normal and shear stresses along the x -axis. 
The linear wave equation (l) follows from (2) if we use 
assumptions 

(3) 

here A and J..l are the Lame coefficients. The equations 
(3) are obtained by using the simple approximation for 
the full energy of the system 

F = F0 + Fj 1u; + F22 v;, 

aF aF 
then cr = -;- and 't = [16]. 

OUx dVx 

In order to get high-order approximations we use 
more terms in a Taylor series of F: 

Let's introduce a dimensionless small parameter £. 

We seek a solution in the form 

u{y, x) = u0 + eu1(t, x~ 
v{y, x) = vo + ev1 (t, x) (5) 

Substituting (5) into the system of equations (2), (4) 
and separating terms according to their associated power 
of e , we derive the following problem: 

We note that all constants u0 and v0 satisfy the 

system (2), (4) and equations (6) do not depend on these 

constants. Therefore we can take u0 = v0 = 0 in (5). 

Let's denote derivatives 

UJx = P(t, x), v1x = Q(t, x), 

UJt = R(t, x), VJr = S(t, x). 
(7) 

Then we get that 

UJtt = Rr ' UJxx = Px ' VJtt = st ' YJxx = Qx 
and rewrite the system (5) in the following form: 

{

R1 - A + 2J..l Px = 4e i_ (a1P2 + azPQ + a3Q2 ), 
p ax 

St - ~ Qx = 4E i_ ~P2 + bzPQ + ~Q2 
). 

p ax 
(8) 

Using the well-known Riemann invariants, we can 
derive a symmetric form of this system. To do this, we 
denote axial and vertical velocities of waves by 

cp = ~A~ 2J..L' Cs = t (9) 

and introduce four unknown functions 

± + 0 p = R ± c pp, s- = S ± csQ · (l ) 

Then we have that 

R = l { + -) p = _I ~+ - p-) 
2 \P + P • 2cp • 

Using equalities fi = Rx, G = Sx , we get from (8) 

the following system of four equations: 

± - ± a t + - + -) 
Pt + CpPx = E ax alP 'p 's 's ' 

± - ± a bt + - + -) s1 + CsSx = E IP , p , s , s , ax 

(12) 

Initial and boundary conditions must be also speci­
fied in order to define a unique solution. This conditions 
will be given later. 

3. Asymptotic analysis 

Our aim is to investigate the dependence of the so­
lution of system (12) on a small parameter e and to 
illustrate the failure of the regular expansion. We note 
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that for e = 0 the system is reduced to four indepen­
dent equations and the solution can be easily calculated 
in the form 

P+ = <1'1~ + ei), p- = <1'2(x- ept), 

s + = 'l'I (x + est), s- = 'l'2 (x - est). 

Thus we have 

1 
UJt = R = - (<pi + <1'21 

2 
1 

VJt =: S =- ('l'I + 'l'21 
2 

(II) 

UJ (t, x) = ~ U <1'1 (x + e /}it + I <1'2 (x - e pt ~t) 

= -
1
- (ct>1 (x + e Pt)- ct>2 (x - e Pt )} 

2ep 

VJ (t' X) = ~ a 'l'I (x + e /';it + I 'l'2 (x - est }it) 

= -
1
- ('P1(x +est)- 'P2(x- est)) 

2es 
(12) 

Therefore for £ = 0 system (12) is equivalent to 
system (2), (3). In order to motivate our discussion of 
problem (12) with a small parameter and to show the 
role of special asymptotic expansion, Jet us first study 
the scalar problem 

{
Pt - e.pPx_= £ PPx• 

(13) 
p(O, x, £) - 0. 

Simple calculations enable us to express the solution of 
(13) in the form of the implicit equation 

p = sin{x + ept + £tp). (14) 

Therefore the derivatives of the solution are given by 

(ep + ep)cos(x + ept + £tp) 
Pt = 1 - et cos(x + e Pt + etp) • 

cos(x + e Pt + etp) 
Px = ( ) I - £t cos X + e pt + £tp . (15) 

Let us assume that x + e pt = 0 . Then we obtain from 

(14) that 

p = 0 , cos(x + e Pt + £tp) = 1 . 

Thus denominators of p1 and Px are equal to zero when 

1 
t = - . A purely non-linear effect of wave sharpening 

£ 

is obtained. Fig 1 presents solutions at two different 

time moments, where we denote Y = x + e pt , T = et . 

Fig 1. The graph of non-linear wave (14) 

Let us consider the Taylor expansion of the function 

p(t, x; e) = sin(x + e Pt) 

+ £tsin(x + ept)cos(x + ept)+ o((etf). 0 6) 

Thus the wave approximation 

p(t,x;e)"" sin(x + ept) 

is uniformly valid only while £ t is a small number. In 
this case we use the linear-wave equation. In order to 

compute the solution for e t "" 1 we must consider the 
complete non-linear problem (13). Now the expansion 
( 16) is not useful as an approximation of the solution 
and special expansion procedures must be applied in 
order to get uniformly converging approximations. 
An interesting feature of (I 6) is that it contains a sec­

ond mode of the Fourier expansion 

sin (x + e Pt) cos{x + e Pt) = ~ sin 2~ + e Pt), 

though the initial condition describes only the first mode. 
This is a direct consequence of non-linearity of the dif­
ferential equation. We will get high order modes in (16) 
if more terms are taken into account. In general, the in­
fluence of these modes is small but in some cases the 
effect of resonant interaction is observed. To illustrate 
such a possibility Jet us consider the first equation of 
system (12) 

+ + - + Pt - epPx = £S Sx • (17) 

and assume that functions s- and s + are known a priori: 

s- = sin k(x- est), s+ = sin l(x +est), k, IE R 

We take the initial condition 

(18) 

Denoting the right-hand side of equation (17) by 

ef(t,x)= 

e/ (sin((k + l)x + (k -1}:-st )+ sin((k -t)x + (k + 1}:-st )) 
2 
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and integrating (17) along the characteristic, we obtain 

t 
p+(t,x;e)=eJJ~,x+cpt-cpr)tr. (19) 

0 

If for all k,l E Z the following conditions are satisfied 

{(k+l~p :t; (k-l~s• 

(k-l~p :t; (k+l~s• (20) 

then the integral on right-hand side of equation (19) is 
equal to a sum of trigonometric functions and p+ de-

creases uniformly for all t,xE R when E ~ 0. The situ­

ation changes if at least one of conditions (20) is not 
satisfied, then a resonant factor t will arise in ( 19). 

Let us consider the problem ( 17), ( 18) with 

Cp =J, Cs =2, k=3, f=J. 

Then we obtain the solution in the explicit form 

p+ = Etsin 4(x+t )+.!..cos2(.x +t )-.!..cos(8t + 2x) 
6 6 

and the first term on the right-hand side of this equality 
defines the secular term. 

4. The method of internal averaging 

It follows from the previous analysis that we cannot 
express a solution of (12) by a simple Taylor expansion 

p±(t,x;e)= p&(t,x)+epf(t,x)+· .. , 

s±(t,x;e)= s&(t,x)+esf(t,x)+···. 
(21) 

Application of such a method for solving problem 
(13),(14) gives expansion (16), and this example was 
investigated above. We have proved that approximation 

1 
(16) cannot be used for t ""' - . 

E 

The system ( 12) is a particular case of general hy­
perbolic systems of differential equations, which are in­
vestigated in our papers [ 17, 18] (see also references to 
related works). In this article we will present main math­
ematical results and will omit the proofs. 

We apply the multiple-scale analysis to (12) and 
introduce a slow time t = et and four fast characteristic 
dependent variables 

We also define average values of the function J, which 
are computed along characteristics 

M+[f)= 
y 

lim _!_ J f(t,y + ,y + -2c Pr,y + +(c s -c P )r,y + -(c s +c P )r ~r 
r_.,T 0 

M - f.r]= 
y 

lim .!..Jf(t,y- +2cpr,y- ,y- +(c5 +cp},Y- +(cp -c5 } ~r r_.,r 
0 

M + f.r]= z 

M - f.r]= z 

lim .!..JJ(t,z- +(c5 +cp},z- +(c5 -cp},z- +2c5 r,z- ~r. 
r_.,T 0 

Each integral depends only on one characteristic depen­
dent variable. We look for asymptotic approximations 
given in the form 

where p± and s± satisfy the averaged integro-differ­

ential system 

(23) 

Here we use notation: 
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Let us assume that displacements u and v satisfy the 
following initial conditions 

u(O,x) = Eq>o(x), u1(0,x) = E<I>J(x), 

v(O, x) = E'lfo(x), v1(0, x) = E'lf1(x). (24) 

Substituting (24) into (7) leads to the following initial 
conditions for P, Q, R and S: 

P(O, x) = cpo(x), Q(O, x) = 'lfo(x), 

R(O, x) = cp1 (x), s(o, x) = 'III (x). (25) 

Let us define new functions 

(26) 

Using (22) we obtain initial conditions for functions p± 

and s±: 

p± (o, y±) = p~ ~± ), s± (o, z±) = s~ (z± ). (27) 

Let us assume that functions p~ , s~ are periodic with 

the period 27t and have continuous derivatives 

(28) 

For brevity of the presentation without a loss of general­
ity, we can assume that 

2n 2n 
I p~ (x ~ = 0, I s~ (x ~ = 0 . (29) 
0 0 

Theorem. There exist positive constants 'to , Eo such 

as that 
I) Problems (2), (4), (24) have a unique solution 

for (t, x, e) e [ 0, ~ J x R x [o, e0 ]; 

2) Problems (23), (27) have a unique solution for 

('t, y +, y-, z +, z-) E [0, 'to] X R4 ; 

3) For any 11 > 0 there exists Ell > 0 such as 

that for all E E (0, Ell J, t E [ 0, ~ ]. x E R 

the following estimates are satisfied 

I 
I { + -~ I { + -1 ut - -IP + P < 11 "x - - \P - P < 11 
2 ' 2cp ' 

5. Analysis of the resonance effect 

The averaged system (23) gives us a posibility to 
find conditions when the non-linear resonant interaction 
can take place. 

5.1. Non-resonance case 

Let us assume that for any k, I E Z the following 
condition is satisfied 

(30) 

is an irrational number. Then the right-hand side 

of system (23) is equal to zero and the system can be 
reduced to four decoupled equations of the Burger type 

S±- ll s±s± o 
t 4 2 ± = . 

Cs z 

The solution of Burger's equation is uniformly 
bounded but for a large 't it may not have a unique 
solution and a shock wave can be formed. Hence our 
analysis gives a region of validity of the non-linear model 
(12). 

5.2. Resonance case 

If we have that 

Cp k 
-;;=!, 

then there is a possibility of resonant interaction between 
the waves. Let us consider the problem (12) with 

p = Jl = I , A. = 2 , a; = b; = I , i = I, 2, 3. 
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Then we obtain that c p = 2 and c s = l . The averag­

ing is done in the interval [0,21t] and we get the system 

of equations 

It is important to note that this system must be solved 
only once and the obtained solution can be used to ap­
proximate the solution of problem (12) for any E, by 
using appropriate independent variables 

"t=ft, .I =x±c;, ~ =x±c;. 
Numerical algorithms for Burger's equation are well-de­
veloped and the system is solved in a finite domain 

[o, 10 ] x [o,21t] . 
The possibility of developing resonant waves in the sys­
tem describing elastic waves was also investigated in [16]. 
Here the analysis is done by using the regular expansion 
scheme, which iteratively takes into account the effects 
of small non-linear disturbances. It leads to the solution 
expansion given in the form (16). We have proved above 
that such an approximation is uniformly valid only for 
et << 1. The resonance analysis given in [18] leads to 
the same condition (30). It is obvious that the regular 
expansion method cannot be used to approximate the 

solution for E t = 0(1). 

Fig 2 shows the solution p+ of system (12) and 
I 

the asymptotic approximation p+ for t = - , E = 0,01 
E 

We see that the averaged system (23) approximates uni-

formly the initial system till time moments t = a(.;) 
and the effect of resonant interaction is also identMea 
correctly. 

0.8 

0.4 

0 

-0.4 

5 6 

Fig 2. The solution p + and the asymptotic p+ 

6. Conclusions 

In this paper the analysis of limitations of the lin­
ear elastic waves model is done and a new method for 
modelling the interaction of non-linear waves is proposed. 
The comparison with linear models gives the following 
conclusions. 

1. The linear-wave approximation is accurate only 
till time moments 1 << E-1, where E is the 
wave amplitude. 

2. If 1 ,., E-1, then the non-linear effects become 
important. Mathematical modelling of this phe­
nomena requires solving complicated systems 
of non-linear POE. 

c 
3. If __!!_ is an irrational number, then the reso-

cs 

nant interaction between waves is not taking 
place and oscillations of the solution are de­
scribed by independent non-linear travelling 
waves and the amplitudes of these waves are 
changing slowly. 

c 
4. If P is a rational number, then the system 

Cs 

describes the non-linear interaction of waves 
and the resonance phenomena take place. In this 
case we need to solve a system of four integra­
differential equations. Though the description 
of this new problem is more complicated than 
the initial one, but the numerical analysis of 
this problem is even easier (eg [19, 20]). In 
addition we note, that the problem (23), (27) 
must be solved only once and the obtained 
solution can be used for any value of the pa­
rameter e . We note, that in this paper our 
method is applied for a very particular elastic 
problem. Therefore it a would be important to 
apply it for more general elastic problems. 
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