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Statybine mechanika 

ERROR ESTIMATOR FOR ACOUSTIC PROBLEMS 

' 
R. Bausys 

1. Introduction 

The numerical simulation of acoustic problems is 

usually performed using standard computational 

techniques such as boundary element method (BEM), 

finite difference or finite element method (FEM). The 

finite element method can be preferred to the 

boundary element technique due to the fact that FEM 

does not encounter the difficulties of numerical 

implementation which are common for BEM 

approach. However, even after more than 30 years of 

development of the finite element method, the 

question of estimating and controlling discretization 

errors remains a major topic of concern even for the 

commonest case of modelling linear elasticity 

problems. In practice, the user has to discretize the 

domain of certain problems according to his earlier 

experience with similar applications. Such discreti­

zation process, being unable to predict proper 

resolution and the proper order of the approximation 

at each location, usually produces a mesh with too may 

elements. An alternative is to find some means to 

identify critical regions, which have to be refined. That 

is, starting solving problems on a crude mesh, one has 

to estimate truncation errors in different locations. 

The posteriori error estimation is the most important 

ingredient of this adaptive mesh design strategy. 

In acoustic problems, steady state sound response 

is governed by Helmholtz equation, which can be 

characterised by a potential loss of ellipticity with in­

creasing wave number in the propagation region. The 

Galerkin method provides good phase and amplitude 

accuracy as long as the mesh is fine enough with re­

spect to wave number. 

Acousticians often use so-called "rule of the 

thumb" which prescribes the minimal discretization of 

a wavelength. Such a discretization process, which is 

based on "rule of thumb", is unable to predict a 
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proper resolution and the proper order of the ap­

proximation at each location and usually produces a 

mesh with too many elements and still we do not have 

a direct measure of the error. 

The most important ingredient in finite element 

adaptive strategies is the estimation of the error of the 

approximate solutions. Constructing a new solution of 

a higher quality since the exact solution for complex­

engineering problems is generally unknown usually 

performs the error estimation. Typically, this new im­

proved solution is obtained by a posteriori procedure, 

which utilise finite element solution itself. By now a 

considerable success have been achieved mainly on 

problems of linear elliptic type, such as linear elasto­

statics and stationary heat conduction problems 

[1]-[5]. 
Bouillard et al [ 6] implemented the original su­

perconvergent patch recovery (SPR) technique for 

acoustic finite element analysis. The original concepts 

are extended to complex variables and the reliability 

of the error estimation is studied. Tetambe and Ra­

jakumar [7] presented the error estimation strategy for 

acoustic analysis based on nodal averaging technique. 

Residual-based a posteriori error estimator for Helm­

holtz equation presented by Harari et al [8]. 

In the present study we have implemented the 

superconvergent patch recovery for prime variables 

(SPRD) technique to estimate the discretization error 

of the solution. The SPRD technique is based on a 

higher order prime variable field fitted to supercon­

vergent values in a least squares sense over local ele­

ment patches. 

2. Governing equations 

The sound field in the enclosure is treated as a 

compressible, inviscid, non-flowing medium (9]. Con­

sider acoustic medium of uniform density p vibrating 



in the enclosure with volume V having surface S. The 

acoustical pressure p(x,y,z,t) is then governed by the 

linearized wave equation 

2 1 a2 P v p---- =0 
c2 at 2 ' 

(1) 

where V2 is the Laplacian operator and cis the sound 

speed. 

This equation also assumes an adiabatic process, 

local changes which are small, and small amplitude 

displacement and velocity of the fluid particles. Since 

the viscous dissipation has been neglected, Eq (1) is 

referred to as the lossless wave equation for propaga­

tion of sound in fluids. Noise sources interior to an 

enclosed cavity can be concluded as forcing terms in 

the wave equation. For the case of monopole source 

the time-varying mass flow rate is 
m(x,y,z,t)=p Q(x,y,z,t), so that 

2 1 a2 P P aQ v p---- =---. 
c2 at 2 v at 

(2) 

Other noise sources can be represented as com­

binations of monopole sources or else can be included 

directly in the wave equation in a similar way. 

The boundary conditions for p determine the re­

flection, absorption and transmission of sound waves 

at the enclosure's surfaces and are derived from fluid 

mechanical considerations. The boundary conditions 

of interest for the present paper are of the following 

types. 

Dirichlet type condition 

p = Pe on Sl. (3) 

Neumann type boundary condition requires that 

the air particle velocity v normal to boundary surface 

to be related to pressure p through 

1 av 
-Vp·n=-- on S2 
P at (4) 

where n is a unit normal to S2 . It is assumed that 

energy is lost by overcoming damping forces at the 

boundaries. The corresponding boundary condition is 

usually expressed as a Cauchy type condition 

In the case time-harmonic excitation, a steady 

solution is sought of the form 

p(x,y,z,t)=Re~0 (x,y,z)ejrot}, (6) 

Q(x,y,z,t)=Ret;?0 (x,y,z)ejrot} (7) 

where j=N. 

In frequency domain the Eq (2-4) then become 

2 m JWP 0 

( )

2 . Q 
V Po + -; Po =- V (8) 

with 

Po=Pe onSJ, (9) 

(10) 

n jpm-
vpo ·n=-zPe 

a 
on S3 . (11) 

In the finite element context, using standard 

Galerkin procedure, we have Eq (8-11) in the form 

VKJ + jpm [C]-m 2 [MJ)qh =- jpmF (12) 

where [Kl is the stiffness matrix 

[K]= j(V[NJf(V[NJ)dn (13) 
n 

and [NJ denotes standard shape functions. Matrix [Cj 

stands for the damping matrix, representing mixed 

boundary conditions (11) 

[C)= jfN}T [N]_!_dS (14) 
S Za 
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and [MJ is the mass matrix 

[ M] = J [ N] T [ N] dfl . 
n 

(15) 

The forcing term in the right hand side of eq.(12) 

has the following form 

F=jfN}T ;d.Q+ jfN}TvndS. 
a s2 

(16) 

The vector t/ contains nodal pressure values, 

which satisfy Dirichlet boundary conditions, Eq (9). 

With the finite element solution of the problem, 

(5) pressure and velocity approximations qh and 

where Za is the normal acoustic impedance. vh =--/---Vqh, respectively, are obtained. 
]pm 
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3. A postprocessed error estimation 

The purpose of the postprocessed error estima­

tion is to provide a local estimate of the solution error 

in some norm. All acoustic variables are complex so 

the error of the finite element solution can be defined 

as 

(17) 

where H 1 is complex Sobolev space and L 2 is sca­

lar norm. Considering the fact that IIPII~_2 (nJ is asymp-

totically negligible behind IIVPII~}(nJ' the error of the 

finite element solution can be expressed as 

liell;_2(!.l) = frvT -vh)(v -li;,)dQ, (18) 
n 

where i denotes the complex conjugate. 

A relative error of the finite element approximation 

can be expressed as follows 

leiL2(Q) 2 
1J = , with lql 2 = f v T vdx . (19) 

lqiL2 (Q) L (Q) n 

From a priori error estimation results [10], we 

can express that the global relative error is bounded as 

follows 

(20) 

with e = kh , wave number k = w , where p is the or-
2p c 

der of the FE basis functions. For linear elements 

p=l, the equation (9) will be of the form 

(21) 

The first term in the error bound reflects the 

classical best approximation error while the second 

term indicates pollution of optimal error for high wave 

number. 

In general case, exact solution is not available, 

and error is estimated using a postprocessed velocity 

field v * of the higher order accuracy 

11
:;;112 I .T T • e11.zrnJ = (v -vh )(v -li;,)dQ. (22) 

n 

In practice, we calculate this norm by summing over 

all elements in the domain Q: 
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(23) 

Where Q; is an element domain and nel is the total 

number of elements. 

The quality of the error estimator is measured by 

its effectivity index, defined as the ratio between the 

estimated and the exact errors 

(24) 

An error estimator is named asymptotically exact 

if e approaches to unity as the characteristic size of the 

finite element h tends to zero. 

4. An improved solution by patch recovery 

A new improved finite element solution can be 

constructed by the SPRD technique. The SPRD tech­

nique is essentially a least square fit of the prime vari­

ables at superconvergent points. This approach pro­

vides superconvergent pressure field q • over local 

element patches. Since the SPRD technique recovers 

superconvergent pressure field that is at least one or­

der higher than finite element solution, the method 

can successfully be implemented in error estimation of 

the finite element solution. This approach is a local 

updating method, so no global system of equations has 

to be constructed and solved. The recovered pressure 

field over an element -r e Th is constructed as 

(25) 

Where r is used to denote finite element -r nodes, s 

denotes additional nodes of the element of the recov­

ered displacement field, N; ( x) and N.: ( x) are local 

basis functions of the order p+ 1 associated with the 

original element nodes and the additional ones, re­

spectively. 

The nodal values of the original finite element 

displacements are of the superior accuracy and are 

assumed fixed ( q;) = ( t/:) . The recovered displace-

ment values ( q_:) at the additional nodes are ob­

tained by solving least squares problem in the reduced 
element patch .a, which represents the union of the 

element under consideration and the part of the sur­

rounding elements: 



Find q • E Pp+J such that 

Where 

* f* J n (q ) = min J n (q ) . 
r r• r 

(q ) EPp+l 

ns 
Jnr(qf*) =L.wfR~(Xj)Rq(xj). 

j=l 

(26) 

(27) 

Where the residual Rq (x j) is defined by ex­

pression as 

(28) 

and 

(qf*) =[Q(x)]b (29) 

Here xj is the location of j-th sampling point in 

the element patch Qr, wj is the weight assigned to 

the j-th sampling point and ns is the total number of 

the sampling (nodal) points in the element patch Qr 

and b are complex unknown coefficients. Details of 

this approach are available in [11-14]. 

When the recovered pressure are determined 

over all elements r E Th , we obtain the pressure field 

of the higher accuracy and a postprocessed error ve­

locities can be determined and error estimation can be 

performed. 

5. Numerical example 

We consider a tube of length L=l.O m and width 

H=O.l m which is shown in Fig 1. The surface of the 

excitation is at left end of the tube. On the other 

boundaries normal velocity set be zero. Regular 

meshes for both elements: linear quadrilateral and 

triangular, are considered. Typical meshes for quadri­

lateral and triangular elements are presented in Figs 1 

and2. 

A sequence of three regular meshes with 20x2, 

40x4 and 80x8 elements is used to study the rate of 

convergence and the accuracy of the results for both 

quadrilateral and triangular elements. 

For this problem an analytical solution is avail­

able and can be expressed by 

v(x) = . Vo sin[k(L- x)). (30) 
sm(kL) 
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v=v0 

~111111111111111111111 
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Mesh3 

Fig 1. Geometry, excitation and typical quadrilateral meshes 

Mesh 1 

Mesh2 

Mesh3 

Fig 2. Typical triangular meshes 

The error estimation was performed for two frequen­

cies of the excitation, 50 Hz and 750 Hz. In the first 

case the non-dimensional wave number k' is then 

equal to 0.92 and for the coarsest mesh: kh=0.046<<1 

and JCh=0.0432<<1 and we will study behaviour of 

postprocessed error estimation in the asymptotic 

range since both assumptions concerning kh and JCh 

are hold. In the second case k' is equal to 13.85 and 

for the coarsest mesh: kh=0.691<1 and JCh=9.59>1 

and we will study behaviour of postprocessed error 

estimation in preasyrnptotic range since only assump­

tion concerning kh is hold. Notice that only in the first 

case non-dimensional wave number respects the crite­

rion of low wave number. The numerical results of the 

convergence rate for linear triangular elements are 

plotted in Figs 3-4. The error in energy norm of the 

original finite element solution, of the post-processed 

solution and of the estimated error of the finite ele­

ment solution is presented in these figures. 



3 

log~~ 

4 
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logh 
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lq-q'l 

1.2 

Fig 3. Convergence rate of triangular elements at 50 Hz 

With the results of the numerical experiments at 

hand, we can make the following observations: 

1. The original finite element solution exhibit order 
of accuracy O(h) as predicted by a priori error 

estimation. 

2. The recovered solution obtained by SPRD tech­

nique demonstrates superior accuracy with respect 

to original finite element solution. 

0.5 r-----.-----,,----....-----.----. 

log~~ 

3L---L---~---L---L--~ 
1.8 1.6 -1.4 1.2 

log h 

Fig 4. Convergence rate of triangular elements at 750 Hz 

3. The superconvergent properties of the improved 

solution are demonstrated for both cases in as­

ymptotic and preasymptotic ranges. 

4. The proposed SPRD technique slightly underes­

timates the exact error of the finite element solu­

tion. 
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Fig 5. Effectivity indices of triangular and quadrilateral ele­
ments at 50 Hz 

The convergences of the effectivity indices are 

plotted in Figs 5 and 6. 

We observe that the effectivity indices converge 

to one rapidly for both quadrilateral and triangular 

elements tested when the finite element mesh is re­

fined. The numerical results show an asymptotic ex­

actness of the proposed error estimator based on the 

SPRD technique. 

1.1 

>-: 

" "'= .s 
b 0.9 
:~ -- triangular 
" ~ ....... quadrilateral 
~ 0.8 

0.7 

1.2 1.4 1.6 1.8 2 

IIIP I 1/hl 

Fig 6. Effectivity indices of triangular and quadrilateral ele­
ments at 750 Hz 

6. Conclusions 

For the error estimation we have implemented 

the Superconvergent Patch Recovery technique for 

the prime variables (SPRD). SPRD technique is ex­

tended to the region of complex variables. A reduced 

element patch is implemented which has an extension 

of the size 2h (where h is a characteristic element size 



in the local patch) in order to maintain locality of the 

least squares fit. This enables us to reduce the cost of 

computation and at the same time to increase the ac­

curacy of recovered pressure field. Only boundary 

patches, which have not enough number of elements 

for reduced patch, are constructed in the usual way. 

The described approach is a local updating method, so 

no global system of the equations has to be solved. 

The number of equations to be solved is small and the 

cost of the recovery procedure is proportional to the 

number of the mesh nodes. Numerical experiments 

show reliability of the proposed SPRD technique due 

to the fact that recovered gradient field exhibits super­

convergence properties. In acoustic analysis distribu­

tion of the pressure field is a function of the frequency 

of the excitation. This case is illustrated by performed 

numerical experiments. 
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AKUSTIKOS UZDAVINTI) PAKLAIDT) .{VERTINIMAS 

R. Bausys 

Santrauka 

Straipsnyje pateikiamas originalus metodas, skirtas 
akustikos uzdaviniq diskretizacijos paklaidoms nustatyti. 
Diskretizacijos paklaidos randamos poprocesoriniu super­
konvergenciniu lopinio atkurimo budu. Darbe pateikta su­
perkonvergencinio lopinio atkfirimo metodo versija, 
pritaikyta tiesioginiams aproksimacijos kintamiesiams 
(slegiams). Pradzioje sis biidas buvo taikytas siekiant jver­
tinti laisvqjq svyravimq uzdaviniq diskretizacijos paklaidas. 
Darbe superkonvergencinis lopinio atkurimo metodas 
pritaikytas kompleksiniq skaiciq sriCiai. Sioje procediiroje 
taikytas sumazintas baigtiniq elementq lopinys, kurio dydis 
yra 2h, kur h yra charakteringas baigtinio elemento dydis. 
Tai leidzia lokalizuoti sritj, kurioje atliekamas atkfirimas 
maziausiq kvadratq metodu, ir kartu padidinti atkurto slegio 
lauko tikslum'l bei sumaiinti skaiciavimo Sllfiaudas. Tiktai 
kraStiniams lopiniams, kuriuose yra nepakankamas ele­
mentq skaicius, taikomas tradicinis lopinys. Pasiiilytas me­
todas yra lokalus, globali algebriniq lygciq sistema nera 
sprendziama. Atlikti skaitiniai eksperimentai atskleide 
pasiiilyto metodo patikimum'l, nes gautas aukStesnes 
tikslumo klases sprendinys turi superkonvergencines savy­
bes. Taikant pasiiilyt'l metod'l, gaunamas patikimas paklai­
dq jvertinimas tiek asimptotineje, tiek priesasimptotineje 
srityse. Gauti rezultatai atveria galimybes rasti kokybiSkai 
jvertintus akustikos uzdaviniq sprendinius. 
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