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years, with the rise and rapid development of intelligent 
computing, more and more researchers have begun to 
build mathematical models and optimize the process us-
ing operation data.

Proportion Integration Differentiation (PID) control 
is still an important control method for power stations. 
However, due to the characteristics of high dimensionality, 
multivariate, time varying, wide operating conditions and 
time delay problems, it is difficult for conventional PID 
control to achieve rapidity and accuracy simultaneously 
for WFGD process (Villanueva Perales et  al., 2010). In 
this situation, some researchers began to experiment with 
machine learning methods to help control PH. Wu et al. 
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	X Based on 44640 sets of data, a ten-input two-output CMAC model was built for WFGD process with high accuracy.
	X Proposed GREA-UDM-CMAC-LNA-GA methodology is logical and effective for model building and optimization of 

high-dimensional data-generation systems.
	X Compared with optimal operation parameters, optimized economic cost with GA was reduced by more than 30% under 

the same input conditions and restrains.

Abstract. In this paper, taking desulphurizing ratio and economic cost as two objectives, a ten-input two-output predic-
tion model was structured and validated for desulphurization system. Cerebellar model articulation controller (CMAC) 
neural network and genetic algorithm (GA) were used for model building and optimization of cost respectively. In the 
model building process, the grey relation entropy analysis and uniform design method were used to screen the input vari-
ables and study the model parameters separately. Traditional regression analysis and proposed location number analysis 
method were adopted to analyze output errors of experiment group and predict the results of test group. Results show that 
regression analyses keep high fit degree with experiment group results while the fitting accuracies for test group are quite 
different. As for location number analysis, a power function between output errors and location numbers was fitted well 
with the data of experiment group and test group for SO2. Prediction model was initialized by location number analysis 
method. Model was validated and cost optimization case was performed with GA subsequently. The result shows that the 
optimal cost obtained from GA could be reduced by more than 30% compared with original optimal operating parameters 
under same constraints.

Keywords: desulphurization system, cost, optimization, CMAC, GA.

Introduction

In last several years, under the pressure of environmental 
issues, many scholars have been committed to the optimi-
zation of environmental facilities in thermal power plants. 
As the most widely used desulphurization method, wet 
flue gas desulphurization (WFGD) has drawn many at-
tentions absolutely. So far, researchers have built system-
atic theoretical models, performed detailed numerical 
simulation, carried out complex simulation experiments 
and verified the models for the system (Kiil et al., 1998; 
Warych & Szymanowski, 2001; Gutiérrez et al., 2006; Dou 
et al., 2009; Wang & Dai, 2018; Liu et al., 2019). In recent 
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(2011) studied external recurrent neural network (RNN) 
for PH control in the absorber. Yang et al. took advantage 
of Radial Basis Function (RBF) neural network to tune 
PID parameters online (Yang et al., 2016). Cheng with her 
fellows applied Back-Propagation (BP) network monitor-
ing the PH of the tank directly to predict desulphurization 
process and use Levenberg-Marquard (LM) algorithm to 
improve the BP network (Cheng et al., 2017). They also 
reproduced the control strategy using RNN neural net-
work like Wu et al. (Cheng & Xie, 2017). Fu et al. (2019) 
used long short-term memory neural network establishing 
an efficiency prediction model and got higher efficiency 
than the least squares support vector machine model and 
RNN model. Yet, these studies only focus on the tradition-
al parameter PH to ensure sulfur removal rate, which ig-
nored the important parameter of energy consumption or 
capital cost. Setting the desulphurization cost as first goal 
and satisfying different sulfur removal rates, Warych and 
Szymanowski (2002) proposed a systematic cost calcula-
tion methodology and used BP net for specific operation 
parameters’ optimization. Guo et al. (2019) used BP net 
and particle swarm optimization algorithm to model and 
optimize desulphurization efficiency and comprehensive 
cost of WFGD system, respectively. In the small quantity 
of neural network-based optimization studies for WFGD, 
BP net are in absolute dominance. Although BP net can 
realize the modelling of WFGD system, it has been widely 
recognized as having problems of slow learning speed and 
falling into local minimums easily (D.  Jin & Lin, 2012; 
W. Jin et al., 2000). As for the desulphurization system, it 
produces a large amount of data all the time, which stings 
the weakness of BP net. Moreover, lacking of clear guid-
ing theory for the numbers of hidden layers and neurons 
in the construction process imposes restrictions on the 
popularization of obtained results. Therefore, model selec-
tion is an important part of the research field of WFGD 
for intelligent computing.

Modelling the structure and function of the cerebel-
lum, CMAC was put forward by Albus for manipulator 
control problems (Albus, 1975a). Different from other 
neural networks, CMAC belongs to table reference tech-
nology. It uses memory system achieving mapping and has 
characteristic of partial learning (Albus, 1975b). CMAC 
has the advantages of fast learning and response, no lo-
cal minimum problem, being suitable for large amounts 
of data and possesses fair generalization ability (Albus, 
1975b; Ching-Tsan & Chun-Shin, 1996). As can be seen, 
the characteristics and advantages of CMAC well fit the 
needs of desulphurization system. Therefore, the applica-
tion of CMAC in desulphurization system is reasonably 
expected to achieve satisfying prediction accuracy, which 
will be further favorable for process optimization. Howev-
er, the studies on the error bound of CMAC are insufficient 
(Lin & Chiang, 1997; Lin & Wang, 1996). Physical storage 
size on the computer required by data is usually the first 
parameter to be determined (Lin & Wang, 1996; Tamura 
et al., 2017). This method is feasible for simple models and 
small data volumes. However, for multi-dimensional and 

data-generation objects, it is conceivable that the practice 
of the method will be less effective.

Slow learning speed and falling into local minimums 
easily of BP net restrain its operation data volume. CMAC 
can process large volume of data but deficient studies of its 
error bound limit applications of the method. If an appro-
priate method can be used to predict the error of CMAC, 
then the large amount of data will no longer be a disaster, 
but an advantage for multi-dimensional and data-genera-
tion objects. Uniform design method (UDM) has a simple 
and mature error analysis system, which is incomparable 
to analyze and predict errors on the basis of limited ex-
periments (Fang et al., 2000). It is more than appropriate 
to use the UDM to analyze and predict the output error 
of CMAC for complex systems. In short, using UDM to 
construct CMAC model for WFGD can not only provide 
a new mathematical modeling method for the process, but 
also promote the research of error analysis of CMAC, which 
will further promote its application in similar objects.

Based on above concepts, distinguishing from existing 
researches, this paper applies CMAC to build prediction 
model for WFGD system with desulphurizing ratio and 
the economic cost two objectives. Data volume is expand-
ed further compared with published studies. A total of 
44640 sets of original data are used. To be specific, in the 
establishment process of prediction model, since the grey 
relation entropy analysis (GREA) can make full use of the 
individual information to obtain overall proximity (Liu & 
Forrest, 2010; Biswas et al., 2014), the method was applied 
to screen model input variables. To reduce the number of 
experiments and analyze error effectively, UDM was then 
applied to design and study the CMAC model parameters. 
Common linear regression and quadratic linear regres-
sion were subsequently used for the analyses of obtained 
results. At the same time, considering the importance of 
memory space for CMAC, the size of memory space and 
output errors were also connected and investigated for er-
ror analysis (called as location number analysis method, 
LNA) innovatively. With the simple logic, mature theo-
retical system and global optimality, GA is still one of the 
main optimization tools (Mostofi & Hasanlou, 2017; Ar-
maghani et  al., 2018; Munroe et  al., 2019). Hence, after 
the completement of CMAC prediction model building, 
GA is finally utilized to optimize the cost. A set of logical 
and scientific analysis methodology was actually proposed 
and attempted, which follows the process of GREA-UDM-
CMAC-LNA-GA. The practice of the methodology will 
provide reliable experience and reference for many other 
similar systems with high dimension and large amount 
of data.

1. Research objects and methods

1.1. Double-loop wet flue gas desulphurization 
process

The data analyzed in this paper is from an ultra-super-
critical unit in Jiangsu province, China. The unit adopts 
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WFGD mechanism, launching a double-loop desulphuri-
zation tower. The schematic is shown in Figure 1.

Figure 1. Double-loop WFGD schematic

In this system, when the flue gas enters the desulphuri-
zation tower and goes upwards, it meets water and dis-
solves into it. Then, the dissolved sulfur dioxide releases 
hydrogen ion, which combines with carbonate to form 
carbon dioxide. Following, sulfite reacts with calcium ion 
and oxygen to generate calcium sulfate precipitates. The 
reactions in these processes are described as R1–R3. 

– + 2– +
2 2 3 3SO  + H O  HSO  + H  SO  + 2H  ; (R1)
2– +
3 2 2CO  + H H O + CO→ ↑ ; (R2)

2+ 2–
3 2 4Ca  + SO  + O  CaSO→ ↓ . (R3)

The entire reaction system operates continuously 
based on the interactions of these reactions. In addition, 
the double-loop tower is divided into independent upper 
and lower absorption spaces, which cooperate with and 
complement each other.

Two traditional indicators are adopted to evaluate the 
performances of the system, namely desulphurizing ratio 
(Rds) and calcium sulfur ratio (Rcas), which are defined as 
followings:

( ) /ds is in os out is inR C V C V C V= − ; (1)

3 2CaCO SO/casR m m= , (2)

where: Cis and Cos represents inlet and outlet concentra-
tion of SO2 respectively, mg/m3; Vin and Vout represents 
total inlet and outlet volume of flue gas respectively, 
104 m3/h; m represents mole number.

1.2. CMAC neural network

The parameters that need to be determined in a CMAC 
model include input and output variables, quantization 
level (Ql) of each input variable, generalization param-
eter (c) and learning rate (ε). Take the two-dimensional 

model in Figure 2 as an example to illustrate the principle 
of CMAC. Under high dimensions, the squares would be 
hypercubes (Albus, 1975a, 1975b; Ching-Tsan & Chun-
Shin, 1996).

Figure 2. CMAC principle diagram

For every dimension, input data is first quantified by 
Ql to quantization numbers. According to different parti-
tion modes of quantization layers, quantization numbers 
are then matched with block codes. Subsequently, block 
codes of same layer from all dimensions are combined 
together (Ab, Dd, Ef). The combination of each layer gen-
erates feature code. Every feature code corresponds to a 
memory location, which stores one or more (depends on 
the number of output variables) weight values. The collec-
tion of all possible combinations constitutes the memory 
space, and weight matric is formulated at the same time. 
For certain input vector, the sum of the selected weights 
is the prediction output. The quantization layer number 
coincides with the value of c. Total location number (ln) 
or the size of memory space can be generalized as:

( )
1 1

 
nc

n bn ij
i j

l Q
= =

=∑∏ ; (3)

( ) ( )( 1) / ( 1) / ,  (1 ,  1 )bn ij l jQ Q i c i c i c j n = − + + − ≤ ≤ ≤ ≤    , 

 (4)
where: n represents dimension; Qbn represents quantiza-
tion block number, which is the total number of block 
codes in certain dimension and certain quantization layer; 
symbol  refers to round up to an integer.

The calculation of weights (w) is usually an iterative 
process: 

)' ( ( ) 0 1),  (w w y f y
c
ε

= + < ε <× − , (5)

in which, f(y) means prediction value of the model for 
output variable, y means actual value of the set. w′ repre-
sents weight after iteration.

In the model building process, for the ease of compari-
son with uniform emission standard, the output variables 
are Cost and Cos but not Rds, of which the Cost is defined 
as follows.

3CaCO SO= (100 0.35 ) / 600cCost M P m+ ×
2

 , (6)
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in which, MCaCO3 means the mass of CaCO3, kg; mSO2 
means mole number of SO2, mol; Pc represents power 
consumption, kW∙h, which consists of stirrer power, 
slurry circulating power, oxygen air power and gypsum 
discharge pump power. The prices of every unit CaCO3 
(t) and auxiliary power (kW·h) are taken as 100 and 
0.35  CNY. Multiplying the value by 600 is to avoid op-
eration loss and error. The advantage of defining cost in 
this way is that different loads can be compared in the 
same class. In addition, mean relative error (MRE) (Ansari 
et al., 2018) index is used as training target so as to modify 
and improve accuracy of model, namely:

1

| ( ) |1  ,
N

i i

ii

f y y
MRE

N y=

−
= ×∑  (7)

in which, N means total sets of data used. The advantage 
of taking MRE as indicator lies in that it emphasizes the 
relative error, which weakens the influence of actual values 
of data. In this way, the results obtained based on WFGD 
system can be extended to other similar objects.

1.3. Practice of GA in CMAC

General processes of GA are population initialization, fit-
ness calculated, genetic evolution and population conver-
gence (Whitley & Tutorial, 1994; Deb et al., 2002). How-
ever, the application of the combination GA and CMAC 
in industrial field needs some necessary preparation, in-
cluding:

(1) Determine the values of characteristic parameters 
to be optimized; 

(2) Select similar samples and determine the maxi-
mum and minimum values of the similar samples 
for the remaining input variables; 

(3) Calculate quantization interval length (Qil) of each 
variable based on the extremum of all preprocessed 
data and Ql, namely:

( ) ( )( ) / ,  1, 2,..., 7ii ll i i iQ MAX MIN Q i= − = , (8)

in which, MAXi and MINi means the maximum and mini-
mum value of preprocessed data for variable i.

(4) Determine new quantization levels Ql′, given as:

)(( )' (( ) / ) ,  1, 2,..., 7ll i i i iiQ maximum minim Qum i = − =  . 
 (9)

Optimization is performed within the extremum 
values of similar samples, while the data not within the 
extremum interval of similar samples are not within the 
optimization range. Therefore, different from the Ql in the 
experimental and test groups, the Ql′ here will be greatly 
reduced.

(5) Determine binary digit numbers (Nbd). Binary ar-
ray expression precision should be less than quan-
tization interval length. That is, 2 bdN should be no 
less than Ql′. The binary digit numbers of all re-
maining variables are linked together as individual 
genes.

(6) Fulfill weight matric, the meaning of which is to 
fill the possible experienced weight space bound 
by the minimax of the similar samples under spe-
cific characteristic value. The filling principle is that 
the weight of untraversed location is equal to the 
average of other weights adjacent to it. In other 
words, the weight of n-dimensional untraversed 
hypercube is determined by 2n coplanar hyper-
cubes. The untraversed initial values are set to 1, 
which is much larger than the maximum of tra-
versed weights. The advantage of the initialization 
is to avoid false local optimal problems caused by 
large quantity of small weights, which is beneficial 
to the next step of optimization.

2. Data preparation and preprocessing

2.1. Data preparation

The obtained data variables from the power station in-
clude unit load (MW), inlet and outlet flue gas param-
eters: volume (Vin, Vout), sulphur concentration (Cis, Cos) 
and oxygen content (%), humidity (%), temperature (°C); 
liquid tank parameters: slurry density (ρt, kg/m3), PH, liq-
uid level (H, m); circulating slurry volume (Vc, t/h), vol-
ume and density of limestone supplements slurry (Vs, t/h 
and ρs, kg/m3); current parameters: current of oxidizing 
air blower (Io, A), stirrer (Is, A), gypsum discharge pump 
(Igdp, A); oxidizing air volume (m3/h), defogging pressure 
difference (Pa) and some other parameters. Due to the 
two-stage absorption tower, the primary parameters are 
suffixed with –1 and the secondary parameters are suffixed 
with –2, for example, PH-1 and PH-2. 

The data selection period is August 2018. The data is 
recorded in minute and totals 44,640 sets. The changes of 
traditional parameter load are shown in Figure 3.

2.2. Data preprocessing

Raw data is always incomplete and inconsistent, which 
not only brings difficulty to data analysis directly, but also 
gives rise to barriers to conclusions. To improve the qual-
ity of the data to be mined, the raw data should firstly be 
preprocessed. This article illustrates the data preprocessing 
process through the case of slurry density. Raw data and 
processed data of the slurry density is shown in Figure 4. 
Black and red dots represent raw and processed data re-
spectively.

As can be seen from the Figure 4, although raw data 
can basically reflect changes in trends, it has distinct fea-
tures of high noises and multiple interruption intervals, 
which brings great resistance to subsequent model build-
ing and data analysis process. To address the problems, 
the characteristic values of interruption intervals were first 
obtained, including the length of intervals, variable values 
of starting and ending points and extreme values. Then, 
similar intervals were found for each interruption inter-
val. The similar interval refers to close extreme values, the 
close span of variable values, and the same or opposite 
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trend. Subsequently, interpolation or resampling method 
was used to fill the discontinuous intervals. After that, fit 
and filter the overall data samples. In the fitting and filter-
ing process, the Savitzky-Golay filter fitting method was 
adopted (Schafer, 2011). The sliding window width is set 
as 201, while the rank of sliding curve equation is 3 in 
the case.

After preprocessing, the data can be applied to the next 
data modeling and optimization process. Portion feature 
values of processed data are shown in Table 1.

3. CMAC prediction model

3.1. Experimental design

GREA is generally considered as an objective and effective 
system analysis method and it is widely used in multi-
factor correlation analysis (Deng, 1982, 1989; Liu et  al., 
2011). Here, this method was used to analyze the correla-
tion of cost with variables. Based on the results, variables 
of load, Cis, Vin, Io, ρs, H-1, PH-1, ρt–1, Vs–1 and Vc were 
adopted to constitute the model inputs. As introduced 

Figure 3. Load changes

Figure 4. Raw and processed data of slurry density

Table 1. Maximin values of processed data

Variables Load Cis Vin Vc ρt–1 Is Io

MAX 990.4 2917 299.9 31.14 1143 874.2 248.4
MIN 498.1 658.5 162.8 0.5500 1060 772.7 0.2360

Variables Igdp PH-1 H-1 Vs–1 Vs–2 ρs Cos

MAX 203.3 7.880 12.62 63.75 74.43 1400 2.978
MIN 0.7100 2.930 9.170 0 0 1236 49.89



Journal of Environmental Engineering and Landscape Management, 2020, 28(2): 74–87 79

in 2.2, the Ql of the ten parameters, accompanied with 
generalization parameter c, total 11 parameters need to 
be determined. Cost and Cos are employed as output vari-
ables normally. After preliminary testing, it is appropriate 
to take ε as 0.34. All 44640 sets of data are in service.

3.1.1. Experiment group
For multi-factor and multi-level experiments, uniform 
design method has incomparable advantages on saving 
time and experimental materials (Fang, 1994; Fang et al., 
2000; Li et al., 2004). According to the principle of uni-
form design method, 13 levels are necessary for 11 vari-
ables (factors). Since U* table generally has less uniformity 
discrepancy, U*12

11 table was selected. The specific data is 
shown in Table 2. 

Regression analysis theory is the common method ap-
plied to the analysis of the results of uniform design (Li 
et al., 2003). The linear regression analysis was firstly used 
for the analysis, of which the basic formula is expressed as: 

11

0
1

i i
i

Y b b x
=

= +∑ , (10)

where, x represents each variable, Y refers to output MRE. 
Based on unique calculation principles of UDM (Fang, 
1994), the obtained results of linear regression analysis 
are shown in Table 3.

In the formulas, the values of b0 are the actual, and the 
rest values are all enlarged by 105 times. From the results, 
the fitting formulas of Cost and Cos have certain simi-
larities: (1) The positive and negative properties of their 

coefficients are consistent; (2) Both coefficients of param-
eter c are much larger than those of other ten parameters. 
On the one hand, the results illustrate the importance of c 
for CMAC. On the other hand, it is proved that the MRE 
index can indeed weaken the influence of sample data, 
which is beneficial to the promotion of obtained conclu-
sion.

Subsequently, quadratic linear analysis was also used 
for error analysis, of which the basic formula is shown in 
Formula 11.

, 1111 11
2

0
1 1, 1 1

 
i j

i i ij i j i
i i j i

i j

Y b b x b x x x
<=

= = = =
≠

= + + +∑ ∑ ∑ . (11)

Using quadratic stepping method of quadratic linear 
analysis, the obtained error prediction formulas of cost Yc 
and SO2 Ys are:

3 9
11

1 3 2 7 4 5

  0.5279 1.208 10 10
( 7.720 2.850 6.697 );
Yc x

x x x x x x

− −= + × + ×
− − −

 
(12)

2 4
11

8
3 4 8 10

 0.3458 0.02491 10

(3.721 1.066 ) 10 .

Ys x

x x x x

−

−

= + × +

− ×
 

(13)

For the convenience of comparison, the fitting results 
of the two regression methods and actual vaues of experi-
mental group are drawn in Figure 5 intuitively.

From Figure  5, both linear regression and quadratic 
stepping method have high fit degree with the actual re-
sults no matter Cost or Cos. Correlation coefficients R2 are 

Table 2. Experiment group values of 11 variables

Load Cis Vin Vc ρt-1 Io PH-1 H-1 Vs–1 ρs c

1 2500 1800 1800 2200 1950 3800 2200 2300 3700 2600 545
2 3000 2600 2100 3400 3200 5600 1600 1800 2500 2400 515
3 3500 3400 2400 4600 1200 3500 2300 2600 1300 2200 485
4 4000 4200 2700 1900 2450 5300 1700 2100 4000 2000 455
5 4500 5000 1700 3100 3700 3200 2400 1600 2800 1800 425
6 5000 5800 2000 4300 1700 5000 1800 2400 1600 1600 395
7 5500 1400 2300 1600 2950 2900 2500 1900 4300 2700 365
8 6000 2200 2600 2800 950 4700 1900 2700 3100 2500 335
9 6500 3000 1600 4000 2200 2600 2600 2200 1900 2300 305

10 7000 3800 1900 1300 3450 4400 2000 1700 4600 2100 275
11 7500 4600 2200 2500 1450 2300 2700 2500 3400 1900 245
12 8000 5400 2500 3700 2700 4100 2100 2000 2200 1700 215

Table 3. Results of linear regression 

b0 (×1) b1 (×10–5) b2 (×10–5) b3 (×10–5) b4 (×10–5) b5 (×10–5)

Cost 0.8263 –4.454 –0.3215 –3.796 –0.6901 –0.9360
SO2 0.8563 –5.609 –0.8170 –8.718 –1.373 –2.327

b6 (×10–5) b7 (×10–5) b8 (×10–5) b9 (×10–5) b10 (×10–5) b11 (×10–5)

Cost 0.1460 –0.4380 2.340 0.6901 1.286 74.23
SO2 0.1666 –0.4997 5.8179 1.3728 3.268 93.48
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always greater than 0.96. This embodys the effectiveness 
of error analysis system of UDM. Comparatively speaking, 
quadratic analysis model has a little bit better accuracy. 
However, this does not mean that quadratic analysis is 
more valuable than linear regression prediction. Quadratic 
analysis has much more variables’ combinations than lin-
ear regression analysis. It supposed to own a higher fitting 
accuracy in theory. The superiority of the two methods 
requires a further comparison of predictive capabilities.

3.1.2. Test group
In order to further verify the prediction ability of the for-
mulas obtained by the experiment group, test group was 
then conducted. The logic of the parameters for test group 
is unified level from U*12

11 uniform table. The specific 
data is shown in Table  4. Data, learning rate and other 
parameters remain the same with experiment group.

Prediction formulas obtained in 4.1.1 were further 
used to predict MREs of test group. Both actual and pre-
dicted values are drawn in Figure 6.

As can be seen from Figure 6, for cost, linear regres-
sion formula still has high accuracy with the actual re-
sults, although it does not completely follow the trends 
of actual results. In terms of SO2, prediction errors of 
linear regression formula have an increasing deviation 
with actual data. The maximum even reached 8.6%. 
Whether the error will continue to increase or not is 
inevitably questioned. The straightforward explanation 
for this phenomenon is that the coefficients of some 
variables are a little bigger, which can be further at-
tributed to the use of lesser levels of uniform design 
table. Generally speaking, for UDM, the more levels 
are, the stronger independence between experiments 
will be, and the obtained formulas are naturally more 
predictive. It can be expected that a more accurate re-
sult would be obtained by improving levels (Fang et al., 
2000). As the reason for why there is no similar prob-
lem of deviation for cost maybe ascribed to data. Since 
cost is calculated rather than measured, it is relatively 
easier to speculate.

 (a)      (b)

Figure 5. Experiment results and analysis: (a) cost (b) SO2

Table 4. Test group values of 11 factors

Load Cis Vin Vc ρt–1 Io PH-1 H-1 Vs–1 ρs c

1 8000 5800 2700 4600 3700 5600 2700 2700 4600 2700 545
2 7500 5400 2600 4300 3450 5300 2600 2600 4300 2600 515
3 7000 5000 2500 4000 3200 5000 2500 2500 4000 2500 485
4 6500 4600 2400 3700 2950 4700 2400 2400 3700 2400 455
5 6000 4200 2300 3400 2700 4400 2300 2300 3400 2300 425
6 5500 3800 2200 3100 2450 4100 2200 2200 3100 2200 395
7 5000 3400 2100 2800 2200 3800 2100 2100 2800 2100 365
8 4500 3000 2000 2500 1950 3500 2000 2000 2500 2000 335
9 4000 2600 1900 2200 1700 3200 1900 1900 2200 1900 305

10 3500 2200 1800 1900 1450 2900 1800 1800 1900 1800 275
11 3000 1800 1700 1600 1200 2600 1700 1700 1600 1700 245
12 2500 1400 1600 1300 950 2300 1600 1600 1300 1600 215
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Even worse, prediction formulas of quadratic stepping 
method have completely wrong trends for both cost and 
SO2. This demonstrates that the regression formulas are 
only the fitting of the experimental data, but not implys a 
deep physical relationship. The reason why the method is 
able to achieve such a high consistency with the results of 
experiment group simply lies on that it has more compound 
modes of variables. Attempts to use other quadratic step-
ping methods yielded even worse results. It is no doubt that 
quadratic linear analysis is not suitable for the case.

Quadratic linear regression has no error prediction 
ability while linear regression has progressively larger 
prediction errors. In order to obtain more accurate fitting 
curve for SO2, new analysis approaches must be explored 
based on the current results. It is explained in more detail 
in part 4.2 that why more accurate error prediction model 
of SO2 is needed.

3.1.3. Location number analysis method
Considering the fact that CMAC belongs to table refer-
ence techniques, the size of the “table” is the reflection of 
detailed degree of mapping and determines the space to 
store information (Tao et al., 2002). Prediction error was 
related to location number tentatively. Location numbers 
are calculated by Formula 3. The numbers of previous ex-
periment and test group are shown in Table 5.

Based on the results of experiment group, the relation-
ship between prediction error of SO2 and location number 
is fitted as:

0.09290
ln 10.35 nlYs −= . (14)

Prediction results of the two groups are presented in 
Figure 7.

From the Figure  7, LNA prediction results have the 
validity for trends, but often have apparent deviation in 
comparison with other prediction results for experimental 
group data. However, for test group, the prediction results 
of fitting formula were highly coincident with actual val-
ues. It is easy to find out that the location numbers of test 
group were generally close to 1012, so the basic idea is that 
the location number prediction formula has high accuracy 
in the nearby area. Reviewing the diagram (a) in Figure 7, 
location number prediction results also have high consist-
ency at some other areas, for example, at number 2, 3, 4, 
8, 11, 12. Obviously, the least squares principle is working. 
Generally, location number fitting formula keeps trends 
correctness in wide span of location number and main-
tains high precision in specific areas simultaneously.

Location number curve fitting produces satisfactory 
prediction results. This conforms the importance of the 
size of the “table”. From the results, the error and location 

 (a)      (b)

Figure 6. Prediction results of test group: (a) cost (b) SO2

Table 5. Location numbers of experiment and test group

Experiment group Test group Experiment group Test group

1 1.361×1010 1.009×1012 7 5.363×1011 9.481×1011

2 4.649×1010 9.972×1011 8 1.305×1012 8.842×1011

3 4.907×1010 1.037×1012 9 2.722×1012 8.9288×1011

4 2.044×1011 1.037×1012 10 1.081×1013 8.3615×1011

5 3.001×1011 1.002×1012 11 2.278×1013 7.670×1011

6 4.790×1011 9.888×1011 12 1.539×1014 7.163×1011
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number are in relationship of power function. However, 
this result is based on the current range of location num-
ber. Whether it is practical in a wider range can be further 
studied in the field of CMAC error analysis. As for this 
paper, a more credible SO2 error prediction formula has 
been obtained.

Comparing the results of above methods comprehen-
sively, quadratic linear analysis has the highest consistency 
with experiment results and the worst predictions for test 
group. Linear regression analysis has relatively poorer 
similarity with experimental data but is able to maintain 
validity for prediction. Location number analysis method 
keeps trends correctness in wide space, and meanwhile 
maintains high precision in areas.

3.2. Model initialized

Now that the error prediction formulas have been settled. 
The cost and SO2 share the same structure of CMAC and 
have similar output precision. Then, the next step is to 
determine the allowable error line. The average sulfur re-
moval rate of preprocessed data is 0.9887, and SO2 con-
centration of chimney inlet is 17.87 mg/m3. If the allow-
able deviation is 1%, that is, if the sulfur removal rate is 
reduced by 1%, the average concentration of export SO2 
would be 34.64 mg/m3, which meets the national SO2 ul-
tra-low emissions of 35 mg/m3 standard in China (Zhang 
et al., 2019). Therefore, model parameters are determined 
as the prediction error of SO2 is 1%.

As can be seen from Figure 6a, location number fit-
ting formula of SO2 has high prediction accuracy nearby 
1% error. Therefore, the prediction formula is adopted for 
model determination. The Ql of 10 input parameters are 

fixed as minimum values from uniform design table, and 
final model parameters were determined by only adjust-
ing the value of c. Calculated c should be no more than 
259. Hence, the model parameters are acquired as listed 
in Table 6.

Using the constructed CMAC model, the cost and SO2 
error are 0.9741% and 0.9812% respectively. Output SO2 
error is close to the objective error. The results demon-
strated that this dual-output model already has high ac-
curacy. There is no need to further adjust parameters. So 
far, CMAC prediction model has finally been initialized.

3.3. Model validation 

Model validation is an essential step in model building 
process. In order to verify the above determined model 
parameters, model validation was then conducted. The 
model training was performed with randomly selected 
95% of the preprocessed data, and the correctness test was 
then proceeded with the remaining 5% (2232 sets). Except 
data volume, the remaining parameters remain the same 
with experiment and test group. The prediction results are 
drawn in Figure 8.

It needs to be noted that each output of CMAC is the 
sum of c weights. Since the amount of data is much small-
er than weight space and the validation model was built 
with 95% of data, it is inevitable that the locations are not 
traversed for the remaining 5% data.

As can be seen from Figure 8, the results of cost and 
SO2 share similar data. the MRE is approximately an 
oblique straight line with not traversed number, which is 
the embodiment of the CMAC prediction principle. This 
shows that large prediction errors are mainly caused by 

 (a)      (b)

Figure 7. LNA prediction results: (a) experiment group (b) test group

Table 6. Determined model parameters

Load Cis Vin Vc ρt–1 Io PH-1 H-1 Vs–1 ρs c

2500 1400 1600 1300 950 2300 1600 1600 1300 1600 259
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non-ergodicity. Then, the MRE of SO2 and cost for 991 
sets of completely traversed data are 1.118% and 1.204% 
respectively, which are larger than the design error. This 
may be due to the lack of generalized traversed data re-
sulting in insufficient generalization performance. In op-
timization process, all sets of data would be in service. At 
that time, if 5% of data was randomly selected, the pre-
dicted MRE would be 0.9741% and 0.9812% in theory. 
That means the error curve has no influence on optimi-
zation process. Therefore, although the errors are larger 
than the design values, it is not caused by inappropriate 
CMAC model parameters, but by non-ergodicity. Hence, 
the model parameters are finally determined.

In addition, the importance of data volume to the con-
struction of the CMAC model can be clearly perceived. 
Although it is unrealistic to increase the amount of data to 
completely fill the weight matrix, when the amount of data 
increases, the number of corresponding weights within 
the range of each variable will be greatly improved under 
different working conditions. In that case, even if some 
locations are not traversed, predictions of weights can be 
filled by appropriate methods. Therefore, it is worthwhile 
to enlarge the data volume in future work.

A total of 44640 sets of data were used in the construc-
tion of the prediction model. However, it still faces the 
problem of small data volume, which shows the ability of 
the CMAC in mathematical modeling of large amounts of 
data (Ching-Tsan & Chun-Shin, 1996). This characteris-
tic is obviously very important especially for systems that 
produce large amounts of data. Compared with the most 
published studies based on small data volume, the CMAC 
model proposed in the paper seems more practical.

4. GA optimization model

One of the significances of model building is to optimize 
process. After the preparation progress as described in 
section 2.3, binary array can establish contact with the 
actual CMAC model input data through minimax values. 
Optimization process can then be conducted through 

general GA steps. In the case, characteristic parameters 
are determined as Load, Cis and Vin, while similarity in-
terval are selected as Load ±5, Cis ±50, Vin ±15.

As can be seen form Figure 3, load was in rapid transi-
tion, which greatly limits the number of similar samples. 
With more similar samples, the range of parameters values 
would be wider, the results would be more global and less 
likely affected by deviation points. Hence, the horizontal 
interval near the 25th is the best period for the selection 
of samples to be optimized. Operating condition of (Load, 
Cis, Vin) = (701.73, 1262.03, 237.93) is selected as optimi-
zation objective. The results of the preparation process are 
shown in Table 7.

Table 7. GA preparation processed results

Va-
riables Maximum Minimum Qil Ql′ Nbd

Vc 18.69 1.587 0.0235 728 10
ρt–1 1143 1075 0.0874 778 10
Io 74.13 69.09 0.1079 47 6

PH-1 7.064 3.192 0.0031 1251 11
H-1 12.55 9.807 0.0022 1273 11
Vs–1 39.93 0 0.0490 794 10

ρs 1400 1240 0.1026 1563 11

After completion of the preparatory phase, specific 
evolutionary rules need to be developed. In the process of 
genetic evolution, the population keeps 200, and popula-
tion initialization was generated by random binary array. 
Individual fitness was calculated by Formula 15:

2(300 / )fitness Cost= . (15)

In the sixth step of the preparation phase, most of the 
vacant weights are initially assignment with large values 
and then determined by iterations, so these weights tend 
to be much bigger, which makes it difficult to meet the re-
quired sulfur removal rate. In order to avoid this situation, 
a strict evolutionary rule is adopted as: The top 10 percent 
of the fitness samples (first 20 samples) were identified as 
strong biological samples. The next 20 samples are posi-
tioned as medium biological sample. Half of the offspring 
are completely generated by combination of strong parent 
samples randomly. The other half progenies are generated 
equally by strong-medium and medium-medium combi-
nation. Gene intersections are randomly selected. Before 
and after the intersections are copies of the parental genes 
separately. The rate of gene mutation is set to 5%, and the 
mutation point is also random.

Due to the fast transitions of working conditions dur-
ing the operation of the desulphurization system and 
the discontinuous operation of the pump, it is inevitable 
that some obtained values are smaller than the normal. 
From the Formula 6, cost is the superposition of factors. 
Hence, in these situations, the calculated fitness would be 
larger than actual values, which would naturally affect the 

Figure 8. Model validation results
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process of genetic variation and ultimately affect the opti-
mization results. In order to avoid the influence of abnor-
mal data on the optimization results, the optimization was 
proceeded with improvement of Rcas constraint. Before 
the selection of strong and medium samples, population 
is screened firstly and these with Rcas < 0.9 are deleted. 
To ensure the characteristic of global optimization, a rela-
tively conservative Rcas is selected.

In the process of optimization, CMAC model was con-
structed based on the determined parameters in Table 6. 
All 44640 sets of data were put into service. Learning rate 
also kept 0.34. After several optimization experiments and 
comparative analysis of the results, the optimal parameters 
and their fitness curves were obtained. The optimal fitness 
in each generation is shown in Figure 9.

Figure 9. Optimal fitness curve

As can be seen, the optimal fitness in the first ten gen-
erations is rising rapidly except the short pause in the 6th 
and 7th generations. This might be because the local opti-
mum was encountered. Besides, after 13 generations of ge-
netic evolution, the optimal fitness reached a stable value 
of 35.94, which means the optimum operating condition 
has been found under the input condition.

At the same time, the parameters of lowest cost satisfy-
ing the ultra-low emissions standard were found in similar 
samples and compared. The optimized results using GA 
(condition 1) and optimum operating parameters in origi-
nal data (condition 2) were listed in Table 8.

The cost and Rds of the two optimum conditions are 
respectively 50.04, 0.9905 and 71.88, 0.9883. From the 
two sets of data, most data of condition 1 have decreased 
to some extent while Vs–1 increases due to the low level 
of ρt–1. From the perspective of cost, the reduction of Vc 

and ρt–1 means savings of actual materials. Meanwhile, 
the reductions of Vc and Io represent a reduction in power 
consumption. From the Formula 6, they together lead to 
a cut down of cost. In fact, the success should be attrib-
uted to the deeper reason, the excellent generalization and 
prediction ability of CMAC (Zhou et al., 2018). Because of 
CMAC’s extraordinary generalization ability, untraversed 
operating conditions gain their predicted values, and op-
timization can be carried out smoothly. In addition, this 
result also reflects the global optimization of genetic algo-
rithms (Horton et al., 2018).

From the definite optimization case, it can be seen that 
the model is expected to be able to give appropriate ad-
justable parameters such as Vc, Vs–1 in time under differ-
ent conditions. This will provide guidance for actual engi-
neering operation and help the system to ensure a higher 
sulfur removal rate with lower cost, thereby achieving the 
effect of energy conservation. Of course, the above results 
are based on the data and the specific object, an absorber 
of 1000 MW plant with a double-loop desulphurization 
process. For other different objects or desulfurizing tow-
ers with different design loads and structures even same 
object with different data, the model dimensions or input 
variables of the prediction model may be different. How-
ever, no matter how objects and data change, the entire 
method proposed in the article has been proved to be cor-
rect and feasible.

The article is just a tentative application of CMAC neu-
ral network for modeling systems with large amount of 
data. There are details that can be further studied and im-
proved. Specifically, the data used in the article is monthly 
data. It is still small compared with the research object 
which generates data all the time. It is worth studying on 
larger volume of data in future research. What’s more im-
portantly, the characteristics of the research subject may 
be gradually changing, which means the closer the data 
is to the current, the higher the value, and conversely, 
the longer the data is, the lower the value. Therefore, it is 
meaningful to weight the prediction accuracy of different 
data period to make the prediction model closer to the 
current object.

Conclusions

Using 44640 sets of data, a ten-input two-output CMAC 
model was built for WFGD system based on GREA and 
UDM. Compared with traditional regression analysis, lo-
cation number analysis method was attempted to predict 
error and determined model parameters. Optimization of 
cost was further conducted using GA. From the results, 
some conclusions can be drawn as followings:

Table 8. The optimal parameters of two methods

Load Cis Vin Vc ρt-1 Io PH-1 H-1 Vs–1 ρs

1 701.73 1262.03 237.93 10.21 1080.78 69.95 4.89 11.40 6.77 1399.61
2 701.40 1289.69 237.71 10.55 1106.51 72.61 4.76 11.44 6.24 1400.00
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1) From the high accuracy of the prediction model 
and the significant energy saving of optimization 
case, it can be demonstrated that CMAC is suit-
able for mathematical modeling of such multi-di-
mensional and data-generation system. The GREA-
UDM-CMAC-LNA-GA methodology is logical and 
effective for model building and optimization.

2) The power function between error of SO2 and lo-
cation number and its accurate predicted values 
of test group prove the correctness of the location 
number analysis method. It is much more conveni-
ent and effective to determine model parameters of 
CMAC compared with regression analysis.

3) With mature theoretical basis, it is promising to 
use GA to optimize parameters. In the optimiza-
tion case, CMAC’s optimal cost is reduced by more 
than 30% compared with regression analysis under 
same constrains, which fully shows feasibility and 
effectiveness of GA.

The table reference principle of CMAC is the full 
extraction and utilization of the information of histori-
cal data. The successful implement of CMAC in WFGD 
system provides a new feasible and reliable solution for 
industrialization to reduce economic cost. Besides, the use 
of MRE index makes the analysis results in this paper have 
reference value for similar systems.
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APPENDIX

Nomenclature

c generalization parameter Ql quantization level 
Cis sulphur content of inlet flue gas Qn quantization number 
Cos sulphur content of outlet flue gas Rcas calcium sulfur ratio
ε learning rate Rds desulphurizing ratio 
H liquid level height Vc circulating slurry volume
Igdp current of gypsum discharge pump Vin volume of inlet flue gas
Io current of oxidizing air blower Vout volume of inlet flue gas
Is current of Stirrer Vs supply slurry volume
ln location number w weight
m mole Abbreviations
M mass CMAC cerebellar model articulation controller
n dimension GA genetic algorithm
Nbd binary digit number GREA grey relation entropy analysis
Pc power consumption LNA location number analysis
ρs supply slurry density MRE mean relative error 
ρt slurry density of the tank UNM uniform design method
Qil quantization interval length WFGD wet flue gas desulphurization


