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1. Introduction

A new round of technological and industrial changes is being sparked by artificial intelligence, 
which is a key driving force behind the advancement of science and technology. Therefore, 
whether we can take advantage of it is a strategic concern. Consequently, China treats artificial 
intelligence technologies as a development strategy that enhances comprehensive national 
competitiveness and highly values their contribution to economic growth. Most importantly, 
a national strategy for building an innovative and powerful country in science and technology 
should include artificial intelligence. As part of China’s Made in China 2025 initiative to be-
come a manufacturing power, the State Council emphasized intelligent manufacturing as one 
of five major projects. Over the next three years, the Ministry of Industry and Information 
Technology will develop a new generation of artificial intelligence industry, as announced in 
2017 by the Ministry of Industry and Information Technology. In the report, agglomeration 
areas for the artificial intelligence industry are being explored as a means of encourag-
ing breakthrough development of the industry. Artificial intelligence is a new science and 
technology and application system that researches and develops theories, methods and 
technologies that simulate, extend and expand human intelligence (Wang, 2019; Liu et al., 
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2020). With the rise of new technologies and concepts such as artificial intelligence in various 
industries, various industries have gradually transformed into digitalization, intelligence, and 
automation, and entered a new stage of modern industry. At the same time, one of the major 
scenarios for the application of artificial intelligence technologies is the industrial robot, which 
are intelligent machines that can be controlled, repeated, and accomplished with multiple 
objectives, replacing humans in repetitive, complex, and time-consuming tasks (International 
Federation of Robotics [IFR], 2020). Traditional industrial robots only replace some tedious 
manual labor with robots and become an extension of human physical strength. Still, the 
intelligence level of robots is not enough to complete some relatively easy work.

In contrast, integrating artificial intelligence technology makes up for this shortcoming. 
The addition of artificial intelligence makes industrial robots respond in a similar way to 
human intelligence, giving the robot new vitality so that it can not only replace most of 
the manual labor of humans, but also take the place of the mental labor based on the 
program setting, improve production efficiency, and significantly reduce factory production 
costs. Therefore, with strong national policy support, industrial robots are rapidly adopted 
in production and manufacturing. In this case, a noteworthy question is whether the rapid 
expansion of “quantity” is accompanied by the simultaneous improvement of “quality”. 
Therefore, improving urban productivity is of important practical significance for our country 
to encourage the thorough integration of industrial robots and the actual economy and 
develop the urban economy at a high level of quality.

The application of industrial robots has become an essential power source to promote 
China’s transformation from a “major manufacturing” to a “manufacturing power”. Industrial 
robots are intelligent machines that can be controlled, repeated, and accomplished with 
multiple objectives, replacing humans in repetitive, complex, and time-consuming tasks. 
Industrial robots can be controlled, repeated, and executed automatically. According to the 
IFR (2020), about 2.7  million industrial robots are used worldwide, which makes a world 
record. As shown in Figure 1, 783000 industrial robots were in use in Chinese factories as of 

Figure 1. Cumulative installation of industrial robots in the top 15 countries (source: IFR, 2020)
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the end of 2019, with more than 140000, an increase of nearly 21% compared with 2014. The 
chairman of IFR said that the global industrial robot market is currently dominated by China, 
with the most significant new imports in the world.

While stepping into the new normal, China is also faced with the practical problem of 
decreasing marginal returns to capital, labor, land, and other factors. Total factor productivity 
(TFP) is the output excluding capital, labor and land. High-quality development and medium 
and high growth rates can be achieved by improving TFP. Furthermore, China’s TFP growth 
rate has slowed or even declined during the past decade (Huang et al., 2019). According to 
statistics, from 2005 to 2007, a total factor productivity growth rate of 3.7% was recorded in 
China on an annual basis. However, total factor productivity’s average yearly growth rate fell to 
1.8% from 2007 to 2013, at the lowest point of 0.96% in 2012 (Wang et al., 2013). Academics 
and industry are interested in how industrial robots affect urban total factor productivity 
since improving total factor productivity has always fueled economic growth in China and 
the world. Compared with the previous studies, there are several contributions to this paper.

First, several existing studies investigate the impact of income gaps, industrial structures, 
and structural changes on urban TFP without considering technological innovation, such as 
the application of industrial robots (Krüger, 2008; Bárány & Siegel, 2018; Beugelsdijk et al., 
2018; Amri et  al., 2019; Van Neuss, 2019). In cities that improve total factor productivity 
quickly, most cities introduce more industrial robots adoption (Zhao et al., 2022). Although 
estimating robots has significant practical value for urban total factor productivity, it has not 
been thoroughly discussed in the previous literature. This paper enriches the research on 
urban TFP using industrial robots as a framework for investigating urban TFP.

Second, this paper not only calculates and analyzes the TFP of cities from the perspective 
of industrial robots, but also includes manufacturing agglomeration, productive service 
industry agglomeration, and their collaborative agglomeration, which are easily overlooked 
and essential factors facing China’s economic transformation in the analysis framework. This 
is also the theoretical implications that distinguish this study from previous studies.

Finally, we discover that spatially heterogeneously using industrial robots in cities affects 
total factor productivity. For example, western underdeveloped areas benefit more from 
industrial robots than eastern developed areas when it comes to improving urban TFP. 
The findings of this research not only contribute to the high-quality potential for urban 
economic growth in China, which is defined by urban total factor productivity, and policy 
recommendations for advancing the coordinated application of industrial robot use and 
urban economy, this is also the practical implications that distinguishes this study from 
previous studies.

2. Literature review and theoretical framework

2.1. Literature review

After reviewing existing literature, there will continue to be a lot of controversy in the 
academic community for a long time to come about how China’s total factor productivity can 
be developed and changed (Brynjolfsson et al., 2019; Acemoglu & Restrepo, 2018a, 2018b, 
2020; Petralia, 2020; Pan et al., 2022; Luo et al., 2022). The focus is on whether new technology 
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can effectively increase total factor productivity for a long time. Industrial robots are an 
important application field of China’s emerging technologies to promote the improvement 
of TFP. The research on the impact of industrial robot use on TFP mainly focuses on the 
following two categories (Brynjolfsson et al., 2019; Acemoglu & Restrepo, 2018a, 2018b, 2020; 
Petralia, 2020). According to one view, by increasing work efficiency and reducing labor costs, 
industrial robots can increase TFP. Chinese total factor productivity will substantially increase 
by applying the Internet, big data, artificial intelligence, and blockchain technologies (Pan 
et  al., 2022; Luo et  al., 2022). First, industrial robots will promote technological progress, 
significantly enhancing total factor productivity (Acemoglu & Restrepo, 2018a). Second, 
applying industrial robots to replace unskilled workers is conducive to increasing total factor 
productivity by improving enterprise production efficiency (Acemoglu & Restrepo, 2018b). 
Third, industrial robots are conducive to achieving the refinement and precision control of the 
product production process, reducing adequate labor time, improving management efficiency 
and product quality, and thus promoting total factor productivity (Acemoglu & Restrepo, 
2020).

However, there is an opposing view that artificial intelligence is incapable of generating 
rapid economic growth and does not increase total factor productivity in a significant way 
(Brynjolfsson et al., 2019). Scholars who hold the opposite view believe that industrial robots 
suppress total factor productivity. Promoting total factor productivity with industrial robots, 
but the conclusions are biased because of measurement errors in production efficiency. 
For example, the multi-factor productivity of the science and technology industry brings 
comprehensive indicators such as output, labor, and capital into the growth analysis 
framework and finds that the contribution to total factor productivity growth is 10.9%, rather 
than the official 3.1% (Petralia, 2020). It is found that industrial robots do not promote total 
factor productivity, which may be caused by misexpectations and lag in factor reorganization. 
Additionally, there may be a time delay effect caused by industrial robots on TFP growth 
(Brynjolfsson et al., 2019).

The above views are hotly debated, but neither is backed up by empirical evidence. 
However, it is also possible to find studies that the relationship between industrial robot 
application density and total factor productivity was U-shaped (Du & Lin, 2022). The 
conclusions of the existing studies are quite different or even opposite. This provides valuable 
insight into industrial robot adoption’s role in developing high-quality urban economies.

2.2. Theoretical framework

By adopting industrial robots, production efficiency can be directly improved and enhanced 
by integrating them with traditional production factors. Furthermore, robotics can accelerate 
the improvement of total factor productivity when the demand for other factors increases 
rapidly (Acemoglu & Restrepo, 2018b). Next, we mainly analyze the mechanism by which 
the industrial robots affects urban TFP from several aspects, including urban innovation at 
the urban level, industrial agglomeration at the industrial level, and technological progress 
and efficiency (by decomposing urban total factor productivity). Urban innovation aims to 
optimize resources through intelligent methods using industrial robots at the urban level, 
create new economic growth points, improve the conversion rate of innovation achievements, 
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and thus stimulate innovation vitality. Industrial agglomeration is from the industrial level, 
focusing on the use of industrial robots that require the use of platforms for production and 
operation, and then the use of massive data for prediction to improve quality and improve 
processes. It can better meet the needs of data storage and analysis in production, effectively 
achieve connectivity between infrastructure and public services, and promote maximum utility.

2.2.1. Urban innovation

With the rapid development of information technology, the deep integration of industrial 
robots and the real economy has infused new vitality into the advancement of the city’s 
innovative development (Caragliu & Del, 2019). The industrial robots can accelerate the 
innovation of network information technology, optimize resources through intelligent 
methods, create new economic growth points, reduce “asymmetric” public services, promote 
enterprises to achieve “customer-driven” innovation research and development, improve the 
conversion rate of innovation results, and stimulate innovation vitality, thereby promoting 
urban innovation (While et al., 2021).

Since Solow’s pioneering research, people have recognized the positive impact of innova-
tion in promoting economic development (Solow, 1957; Aghion et al., 2009). As a result of 
innovation, urban development can improve total factor productivity and become more sus-
tainable (Saleem et al., 2019; Pan et al., 2022). Although, in theory, innovation has a particular 
opportunity cost and spillover effect, according to empirical analysis, urban innovation can be 
said to be a recombination of factors of production, technological conditions, and mode of 
production. It is reflected in the continuous improvement of high-quality labor and scientific 
and technical investment, resulting in more technological achievements. Interactions between 
them result in changes in economic development modes and urban total factor productivity 
improvements. Therefore, we put forward hypothesis 1:

H1.	Robot adoption may promote urban total factor productivity through urban innovation.

2.2.2. Industrial agglomeration

Industrial agglomeration is the carrier for microeconomic subjects to engage in technologi-
cal innovation or efficiency improvement activities. This is because its supporting capacity 
determines the efficiency of technological progress or technical efficiency improvement to a 
large extent (Wei et al., 2020; Ramachandran et al., 2020).

First, high-tech industries such as industrial robot research and development need to 
generate a large amount of data with the help of platform production and operation, and 
then use massive data for prediction to improve quality and processes. Second, industrial ag-
glomeration is a robust bearing platform for high-tech industries, including industrial robot 
adoption research and development, which can better meet the data storage and analysis 
in production and effectively realize the connectivity of infrastructure and public services. 
Third, promoting factor sharing, optimal allocation of resources, and utility maximization may 
improve urban total factor productivity (Ge & Chang, 2021).

Second, through urban development, the manufacturing industry, producer services, and 
collaborative agglomerations that are associated with them gradually developed, fostering 
the healthy development of the application of the industrial robotics industry through its 
deep integration with other sectors (Nguyen & Nguyen, 2018). Meanwhile, by integrating AI 
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talents,, and cooperative communication, geographical industrial agglomerations can realize 
knowledge, technology, and information spillover among different enterprises and then the 
growth of urban TFP will be induced. Therefore, we put forward hypothesis 2:

H2.	Through industrial agglomeration, robot adoption could improve urban total factor 
productivity.

2.2.3. Technological progress and technical efficiency

Progress in technology and technical efficiency is essential for total factor productivity (Du & 
Lin, 2022). By dividing TFP into technical progress and technical efficiency, this paper explores 
the influence mechanism of industrial robot adoption on urban TFP.

From the perspective of scientific and technological development, first of all, the use 
of industrial robots has made a lot of understanding and scientific and technological 
investment, especially the research and development of basic chips. The manufacturing 
process of the application of industrial robotics involves a series of technical links, such as 
equipment improvement, program, algorithm breakthrough, process control, etc. In particular, 
China’s transformation from the first generation robot to the second generation industrial 
robotics, along with technological breakthroughs, service intelligence, and super bright-end 
transformation, contains a lot of technological progress. Second, industrial robotics brings 
knowledge and technological progress through the “learning by doing” effect (Roszko-
Wójtowicz et al., 2019). With the wide use of industrial robots in actual production, a huge 
amount of raw data has been produced. Extensive data analysis helps enterprises produce 
valuable data and information and develop new knowledge from the data. Meanwhile, the 
application of industrial robotics based on mobile internet has to some extent, reduced 
the cost of information between different regions and firms, strengthened the connections 
between enterprises in different regions, and thus promoted technological progress between 
different enterprises (Huang et al., 2019; Du & Lin, 2022).

In terms of technological efficiency, compared with manual manufacturing, the use of 
industrial robots has become more intelligent and easy to manage. First, the use of industrial 
robots to replace those repetitive and low-skilled employees reduces the labor costs of 
enterprises and helps to improve the efficiency of capital allocation and economic benefits 
of the company (Dakpo et al., 2019). Second, in the production process, industrial robots 
can help enterprises realize decision-making, analysis, and design more quickly, ensure 
refined management work, and achieve an advanced production process, thus improving 
management efficiency and promoting enterprise production efficiency. Third, the robots 
adoption can grasp the situation of the consumer side through big data to meet consumers’ 
demand for product quality and diversification. At the same time, they can match supply with 
demand, promote the practical configuration of means of production and products, and then 
promote product upgrading (Rawat & Sharma, 2021). As a result of the above analysis, we 
propose hypothesis 3:

H3.	Robot adoption might increase urban total factor productivity by advancing technology 
and improving technical efficiency.

In Figure  2, we can see the theoretical framework of the mechanisms illustrated with 
diagrams.
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3. Model, variables description and data

3.1. Model

Are they aiming at the research question raised in this paper: How do industrial robots affect 
urban total factor productivity? This paper establishes the following econometric model.

	 1 2 ,Robotit it it i t itTFP X b b l m e= + + + + +  	 (1)

where i represents the city and t represents the year. TFPit represents total factor productivity. 
Robotit represents the application of industrial robots, which is the core explanatory vari-
able. b1 is the coefficient to be estimated for the impact of industrial robot application on 
urban total factor productivity, and it is the estimated coefficient focused on in this paper. 
Xit represents a set of control variables to minimize the impact of omitted variable bias. li 
represents the urban fixed effect, mt represents the year fixed effect, and eit represents a 
random disturbance term.

3.2. Variables description
3.2.1. Total factor productivity (TFP)

Output indicator: Gross domestic product (GDP). The data is derived from Chinese urban 
Statistical Yearbook from 2003 to 2017 (National Bureau of Statistics in China, n.d.), and the 
nominal GDP of each year is converted into real GDP with 2002 as the base year.

Input indicators: The input indicators selected in this paper are capital and labor. The labor 
input indicator adopts the data of employees in the whole society, which is represented by 
the sum of employees in the unit and private individuals. The calculation method of capital 
stock is the perpetual inventory method, and the specific formula is shown in Equation (2) :

	 1.(1 )t t t tK I K −= + −  	 (2)

It mainly involves three essential indexes in the calculation process: base share capital, 
price index and depreciation rate. According to the availability of data, we take the year 2002 
as the base period, and the base capital stock at the city level is determined by the fixed capi-
tal stock of each province in 2002 according to the proportion of each city in the total social 
fixed asset investment of each province in that year. The capital stock at the provincial level is 
converted to the municipal level according to the city size to determine the base capital stock 
at the city level. In addition, the period estimated in this paper is from 2003 to 2017, and the 

Figure 2. The mechanisms of robot adoption on urban TFP

Industrial agglomeration

Urban innovation

Technological progress 
and technical efficiency

Urban total 
factor 

productivity
Robot adoption



Technological and Economic Development of Economy, 2024, 30(5), 1330–1351 1337

capital stock at the provincial level in 2002 (Zhang, 2008). Investment in fixed assets adopts 
provincial fixed asset investment price index where prefecture-level cities are located, which 
was reduced to the same price in 2002. We assume a depreciation rate of 9.6% (Zhang, 2008).

The radial DEA model can’t effectively solve the invalid value caused by the relaxation 
problem. Based on this theoretical defect, the Slack Based Measure (SBM) model directly in-
troduces the relaxation variable into the production function, which can effectively solve the 
relaxation problem in the DEA model. The implementation process is as follows:

	

1

1

11 /
min ;

11 /

m

i ik
i
q

r rk
r

s x
m

p

s y
q

−

=

+

=

−

=

+

∑

∑
	 (3)

                                                      

     
   

 
,

s. t   

,, 0

k

k

X s x
Y s y

s s

l
l

l

−

+

− +

+ =
− =

  

.	 (4)

Where p represents the efficiency value of the evaluation decision-making unit, and m 
and q represent inputs and outputs, respectively. X and Y respectively represent the input and 
output matrix of the decision-making unit; s- and s+ represent the slack variables of input and 
output, respectively. If both are 0, there is neither input redundancy nor output deficiency.  
λ represents the weight coefficient of input and output.

Under the premise of constant returns to scale, the decomposition of total factor 
production efficiency into technological changes and technological efficiency changes better 
reflects the technological efficiency changes of the research object. Therefore, the use of 
this method has been vigorously promoted and applied in many fields (Dakpo et al., 2019). 
Considering the Slack Based Measure (SBM) model, this article will use this method to analyze 
changes in total factor productivity. Therefore, Total factor productivity (TFP) can be divided 
into technological progress (TC) and technical efficiency change index (EC) (Wang & Feng, 
2021):
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where Dt(mt, nt) is the decision unit in period t, Dt(mt+1, nt+1) is the decision unit in period t + 1;  
Dt+1(mt, nt) and Dt+1(mt+1, nt+1) are the decision unit in period t and t + 1.

3.2.2. The application of industrial robots (Robot)

The core explanatory variable is the application of industrial robots (Acemoglu & Restrepo, 
2018a, 2018b, 2020; Huang et al., 2022; Li et al., 2022), which reflects the distribution density 
of industrial robots at the city level, that is, the number of industrial robots per thousand 
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people. The data used here comes from the International Federation of Robotics (IFR, n.d.), 
and the calculation formula is as follows:

	
 Robot ,

t
it

st si t
ii I
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l
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∈

=∑  	 (8)

where /t t t
si si sl L L= , t

sil  denotes the number of employment in i industry of s area during t 
period. t

iR indicates the number of robots in the i industry during the t period. t
iL  represents 

the total number of national employment in the industry i of period t. /t t
i iR L  denotes robot 

density at the national level in industry i of period t. We can get the robot density of s area 
in period t by adding up the robot density of all related industries in s area.

3.2.3. Industrial agglomeration

As for industrial agglomeration, we adopt the location entropy method to measure manufac-
turing agglomeration (magg) and producer service agglomeration (sagg), and its calculation 
formula is:

	 ( ) ( )/ / / ,i i iagg q q Q Q=  	 (9)

where, aggi represents the agglomeration index of manufacturing or producer services; qi is 
the number of employees in an industry in the city i, and q is the number of employees in this 
industry nationwide. Qi is the number of employees in the city i, and Q is the total number 
of employees in the country. Therefore, the calculation formula of collaborative agglomera-
tion between the manufacturing industry and producer service industry (coaggi) is as follows 
(Aleksandrova, 2020; Wang et al., 2022):

	

| |1 .i
magg saggcoagg magg sagg
magg sagg

−
= − + +

+ 	
 (10)

3.2.4. Control variables

Referring to relevant literature, we have selected the following control variables (Du & Lin, 
2022; Huang et al., 2022; Li et al., 2022). Economic development level (pgdp), which is ex-
pressed as the proportion of GDP to registered population; Government intervention (gov), 
which is measured by the proportion of fiscal expenditure to GDP; Human capital (human), 
which is expressed by the number of college teachers and students per 10,000 people; Fi-
nancial efficiency (fe), which is represented by the proportion of loans to deposits of financial 
institutions at the end of the year; Foreign direct investment (FDI), which is expressed as the 
proportion of foreign direct investment to GDP; Unemployment rate (unem), which is defined 
as the proportion of registered unemployed people in urban areas to registered population.

3.3. Descriptive statistics

The main variables and descriptive statistics are shown in Table 1 and Table 2, respectively.
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Table 1. Description of primary variables

Variables Code Unit Data description

Total factor 
productivity

TFP – It is calculated based on equations (3) and (4).

The application of 
industrial robots

Robot – It is calculated based on equations (5).

Economic development 
level

pgdp Yuan/person The proportion of GDP to the registered population.

Government 
intervention

gov % The proportion of fiscal expenditure to GDP.

Human capital human – The number of college teachers and students per 
10,000 people.

Financial efficiency fe % The proportion of loans to deposits of financial 
institutions at the end of the year.

Foreign direct 
investment

FDI % The proportion of foreign direct investment to GDP.

Unemployment rate unem % The proportion of registered unemployed people
in urban areas to the registered population.

Table 2. Descriptive statistics of main variables

Variables Obs. Std. dev. Min Mean Max

TFP 3953 0.9803 0.0272 0.6651 1.0835
Robot 3937 2.2012 0.9776 0.0583 5.5599
pgdp 3953 10.0591 0.8901 6.6378 13.1558
gov 3953 0.1759 0.1808 0.0154 3.7289
human 3953 0.0141 0.0169 0.0000 0.1411
fe 3953 1.2555 0.6371 0.0793 6.5784
fdi 3953 0.0044 0.0151 0.0000 0.3809
unem 3953 0.0063 0.0054 0.0000 0.1154

4. Empirical results

4.1. The evolution of urban total factor productivity  
and industrial agglomeration
4.1.1. The evolution of urban total factor productivity

We calculate the total factor productivity (TFP) index of 286 cities from 2003 to 2017 accord-
ing to equations (2)–(7), and the results are shown in Figure 3.

As can be seen from Figure 3, from 2003 to 2017, China’s TFP and its components (that 
is, the index of scientific and technological progress) showed a gradual increase. The overall 
urban TFP index was between 0.92 and 1, indicating that the general development level 
of urban TFP was relatively stable, with the highest development level appearing in 2015. 
However, after 2011, urban TFP gradually tended to increase, indicating that urban TFP 
increased due to China’s emphasis on improving total factor productivity in recent years. 



1340 B. Li, C. Zhou. Robot adoption and urban total factor productivity: evidence from China

Before 2016, the technical progress index (TC) was lower than the technical efficiency index 
(EC) in the observation period globally. However, after 2016, the contribution of TC to the 
TFP was gradually more significant than EC, indicating that the emphasis on technological 
innovation in China promoted the urban technical progress index.

The situation of robots in China in 2015 remained severe, with the most typical being 
the lack of overall breakthroughs in the core technology of robots. Because industrial robots 
mainly improve technical efficiency by supplementing and replacing the labor force, thereby 
improving urban Total factor productivity. From 2016 to 2017, the urban technical efficiency 
index (EC) and the urban TFP declined similarly. The urban technological progress index (TC) 
grew slowly, and the urban total factor productivity (TFP) decreased less than the urban 
technical efficiency index (EC). This indicates that the decline of the urban TFP in 2017 was 
mainly caused by the decline of the urban EC, And the slow growth of the urban technologi-
cal progress index (TC). The reason may be the external policy environment or the decline 
of the industry’s capital operation and management level during this period. In March 2016, 
the “Robot Industry Development Plan (2016–2020)” jointly released by the Ministry of Fi-
nance, the Ministry of Industry and Information Technology and the National Development 
and Reform Commission have mentioned that by 2020, the annual production of China’s 
independent brand industrial robots will reach 100000 units. The yearly output of six-axis 
and above industrial robots will reach 50000 units. Under policy support and sustainable 
economic development, urban TFP and Total factor productivity and urban EC still declined 
in 2017, indicating that external policies do not cause it. Still, internal allocation problems, 
such as varying degrees of redundancy in using various input factors, and measures such as 
improving input, optimizing resource allocation, reducing enterprise production costs, and 
strengthening management are needed.

4.1.2. The evolution of industrial agglomeration

Based on equations (8)–(10), we calculate the correlation between the concentration index 
of manufacturing and producer services and cities from 2003 to 2017. According to the 
theory of location entropy, the larger the location entropy index, the higher the industrial 
agglomeration level. In contrast, the smaller the location entropy index is, the lower the 
industrial agglomeration level. Figure 4 shows that the manufacturing agglomeration level 

Figure 3. Evolution of total factor productivity from 2003 to 2017



Technological and Economic Development of Economy, 2024, 30(5), 1330–1351 1341

of 286 cities in China from 2003 to 2017 was in a slightly slow fluctuation trend during the 
sample period. However, after 2013, it was somewhat rising, indicating that the manufacturing 
agglomeration development was relatively gentle.

Alternatively, producer services are agglomerating in the opposite direction. Still, the 
overall agglomeration level is slightly lower than that of the manufacturing industry, which 
shows a slight downward trend after 2013. Manufacturers and producer services, however, 
have relatively high levels of collaborative agglomeration, which was in a downward trend 
from 2003 to 2011. Still, it is in an upward trend after 2011. The above evolution aligns with 
the general characteristics of China’s transition economy and the evolution law of advanced 
industrial structure. Especially since 2011, the increasing degree of collaboration between 
manufacturing and producer services shows that China has made great progress. Meanwhile, 
in this process, the coordinated development of manufacturing and services is gradually 
established, which also creates a good industrial foundation for high-quality development 
and a new round of reform and opening up.

4.2. Basic results

To examine the impact of industrial robots on urban total factor productivity, we adopt a 
fixed effects model to estimate Equation (1), and the results are shown in Table 3. Column 
(1) reports the results of only controlling for city and year fixed effects, while columns (2)–(7) 
report the results of adding the corresponding control variables are reported in turn. We take 
column (7) as the reference for discussion. The results show that at the statistical level of 1%, 
the estimated coefficient of robots is significantly positive, indicating that the application 
of industrial robots improves the urban total factor productivity. Therefore, it is necessary 
to optimize further the ecological environment of talents who “come from far away” and 
improve urban human capital.

4.3. Endogeneity and robustness test

A possible problem in this paper is that cities with high total factor productivity are more 
inclined to use industrial robots. That is, cities with high total factor productivity take the 
initiative to choose industrial robots for production instead of industrial robots, increasing 

Figure 4. The trend of Industrial Agglomeration from 2003 to 2017
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urban total factor productivity. There may be a reverse causality between industrial robot use 
and urban TFP. We use the instrumental variable method to alleviate the endogenous prob-
lems mentioned above. We chose WD-Robot as the instrumental variable and constructed 
it as follows: The total number of global robots is subtracted from the number of domestic 
industrial robots, and then the number of urban workers is used as the weight (Acemoglu & 
Restrepo, 2018b, 2020). Instrumental variables must meet the two assumptions of correla-
tion and homogeneity (Acemoglu & Restrepo, 2018a). Since there are already a considerable 
number of industrial robots in the world, the use of industrial robots among countries is 
competitive. On the other hand, the number of industrial robots in other regions is inversely 
proportional to their own numbers.

In addition, the invention and application of light industrial robots in 2006 were also 
selected to construct instrumental variables (Du et al., 2010). For the correlation of the in-
strumental variable, the emergence of light industrial robots is not only a technology shock 
but also has different impacts on different regions. Because of the fewer restrictions on 
the application of light industrial robots and the lower relative cost, it is especially suitable 
for application in religions with weak industrial foundations and lacking industrial capital. 
Since 2006, the industrial robots in various regions has gradually increased, and a consid-
erable proportion of them are light industrial robots. Like industrial robots, light industrial 
robots transmit data and information quickly on the internet, and the scale of the network 

Table 3. The impact of robot adoption on urban TFP

(1) (2) (3) (4) (5) (6) (7)

Robot 0.0142***
(0.0022)

0.0091***
(0.0017)

0.0090***
(0.0015)

0.0089***
(0.0015)

0.0089***
(0.0015)

0.0089***
(0.0015)

0.0090***
(0.0016)

pgdp 0.0188***
(0.0018)

0.0111***
(0.0022)

0.0114***
(0.0023)

0.0115***
(0.0023)

0.0125***
(0.0023)

0.0125***
(0.0024)

gov –0.0363***
(0.0075)

–0.0360***
(0.0075)

–0.0361***
(0.0075)

ؘ–0.0374***
(0.0082)

–0.0375***
(0.0082)

human –0.0370
(0.0337)

–0.0391
(0.0339)

–0.0576*
(0.0342)

–0.0555
(0.0346)

fe 0.0015
(0.0011)

0.0017
(0.0011)

0.0018
(0.0012)

fdi 0.0059
(0.0155)

0.0065
(0.0156)

unem –0.0821
(0.0807)

_cons 0.9360***
(0.0045)

0.7750***
(0.0173)

0.8495***
(0.0204)

0.8466***
(0.0212)

0.8444***
(0.0214)

0.8342***
(0.0222)

0.8349***
(0.0223)

City-FE YES YES YES YES YES YES YES
Year-FE YES YES YES YES YES YES YES
N 4131 4130 4129 4129 4127 3951 3937
R2 0.4662 0.5097 0.5325 0.5326 0.5320 0.5546 0.5533

Notes: Robust standard errors clustered at the city level are in parentheses; *, ** and *** denote signifi-
cance at 10%, 5% and 1% levels, respectively. The same below.
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can be rapidly expanded, providing faster response speed, richer information content and 
smarter application mode. For the externality of this instrumental variable, the invention and 
application of young industrial robots in 2006 can be used as a good natural test. The ap-
pearance of light industrial robots is a relatively exogenous technological impact. Therefore, 
besides the channels of industrial robots, we hold that this instrumental variable is relatively 
exogenous to urban total factor productivity.

Consequently, we construct the instrumental variable Post2006×Industry, where Post2006 
is a virtual variable, indicating whether the external impact of light industrial robots has 
occurred. The current year is greater than or equal to 2006, and the value is assigned to 1; 
otherwise, it is 0. The industry is the proportion of local industrial output value, representing 
the difference in industrial base among cities.

The results of instrumental variables are shown in Table 4. The application of industrial 
robots still positively promotes urban total factor productivity.

4.4. Expand the coverage of industrial robots  
and help underdeveloped areas

Suppose the application of industrial robots affects urban total factor productivity through 
technological progress. In that case, the backward areas in the past can enjoy the service of 
modern technology through the application of industrial robots, thus promoting the urban 
total factor productivity of these areas. However, while the technology in developed areas is 
more advanced, the role of the introduction of industrial robots is more “icing on the cake”. 
Therefore, in the empirical study, we consider the influence of different regions, developed 

Table 4. 2SLS estimation results

(1) (2)

Panel A: Second-stage estimation

Robot 0.0159***
(0.0017)

0.0168***
(0.0019)

Controls YES YES
City-FE YES YES
Year-FE YES YES
N 3933 3933
R-squared 0.242 0.199

Panel B: First-stage estimation

WD-Robot (IV)  –1.8187***
(0.0010)

Post2006×Industry (IV) 0.0212***
(0.0023)

Controls YES YES
City-FE YES YES
Year-FE YES YES
KP F-statistics 324.27 156.86
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and underdeveloped areas and regions with other degree of marketization and study whether 
industrial robots in underdeveloped areas have a more significant impact on urban TFP.

Specifically, we group the sample by east, middle, west, and northeast to investigate the 
spatial heterogeneity impact of industrial robot use on urban total factor productivity. Table 5 
reports the results. The coefficient of Robot in the eastern region on urban total factor pro-
ductivity pass the statistical level test of 5% and is significantly positive. The coefficient of 
Robots in the middle and western areas is significantly positive at the statistical level of 1%, 
and coefficients of eastern, central and western regions increase. It indicates that the applica-
tion of industrial robots in these three regions improved urban total factor productivity, and 
the promotion effect on the western region is more obvious. However, the application of 
industrial robots in the Northeast region has no significant impact on urban total factor pro-
ductivity, possibly due to the severe brain drain in Northeast China in recent years. Compared 
with other areas, there is a particular gap between high-level talents. Therefore, although 
industrial robots have a specific first-mover advantage, the industry’s overall performance in 
recent years has been relatively limited.

Table 5. Heterogeneity test: Different regions

(1) (2) (3) (4)

East Middle West Northeast

Robot 0.0047**
(0.0022)

0.0092***
(0.0029)

0.0139***
(0.0034)

0.0091
(0.0070)

Control YES YES YES YES
City-FE YES YES YES YES
Year-FE YES YES YES YES
N 1266 1167 1021 483
R2 0.5436 0.5938 0.5133 0.4643

In addition, the level of economic development is different in the region, such as per 
capita GDP and marketization, can significantly promote total factor productivity growth 
(Beugelsdijk et al., 2018; Wu et al., 2020). We refer to the “2021 China City Business Charm 
Ranking List” published by the New First-tier Cities Research Institute, and we divide cities 
into five aspects: the first is the concentration of commercial resources, the second is the 
urban hub, the third is the urban activities, the fourth is the diversity of lifestyle, and the fifth 
is the future plasticity (Tao et al., 2023; Lan et al., 2023; Zhou & Li, 2023). According to all five 
dimensions1, we divide groups as follows, cities below the median are backward areas, and 
cities above the median are developed areas2 (Cui et al., 2023). For marketization, the current 
literature usually adopts the marketization index to characterize the marketization process, 
and we use the marketization index to measure the marketization degree by grouping the 
median. According to Fan et al. (2012), regarding the calculation of the marketization index, 

1	Please see the https://www.datayicai.com/ for details.
2	According to our calculations, there are a total of 337 cities on the 2021 China City Business Charm Ranking List, with a 

median ranking of 169th.
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we define the maximum and minimum provincial values of each positive primary indicator in 
the base period year as 10 points and 0 points, respectively (for negative indicators, 0 points 
and 10 points respectively), and determine their scores based on the relative positions of 
the indicator values in each province’s base period year with the maximum and minimum 
indicator values, thus forming the corresponding primary index for that indicator. The five 
aspect indices are combined to form a marketization index, which reflects the relative mar-
ketization process in different provinces based on the base year. To avoid data incompatibility 
in additional years due to changing the weight of indicators, the arithmetic mean method 
is used to calculate each sub-index and aspect index for the latest marketization index over 
the years, thus maintaining the comparability of cross-year data3. Cities below the median 
have a low degree of marketization, while cities above the median have a high degree of 
marketization (Fan et al., 2011; Zhang, 2021).

In Table  6, columns (1)–(2) present results of industrial robots’ impact on total factor 
productivity in backwards and developed regions, while columns (3)–(4) present results of 
industrial robots’ impact on total factor productivity in markets with low and high levels of 
marketization. In regions with varying levels of economic development, there is typically het-
erogeneity in the induced effects of industrial robot use on urban TFP growth. Among them, 
industrial robots have played a huge role in promoting the development of underdeveloped 
areas. In addition, in areas where the level of marketization is not high, the use of industrial 
robots can significantly improve urban TFP. The above results show that applying industrial 
robots will help underdeveloped areas.

Table 6. Heterogeneity test

(1) (2) (3) (4)

Backward region Developed region High degree of 
marketization

Low degree of 
marketization

Robot 0.0079***
(0.0020)

0.0028
(0.0026)

0.0049**
(0.0021)

0.0007
(0.0021)

Control YES YES YES YES
City-FE YES YES YES YES
Year-FE YES YES YES YES
N 2045 1892 1993 1944
R2 0.5726 0.4770 0.4714 0.5419

4.5. Mechanism analysis
4.5.1. Urban innovation

First, the use of industrial robots, through scientific and technological innovation, promote 
the gathering of new industries and new technologies, enhance their innovation ability and 
competitiveness, thus promoting the economic growth of a region. Therefore, this project 

3	 For more detailed calculation methods, please refer to “China marketization index: report on the relative progress of 
marketization in various regions in 2011”, Fan et al., Economic Science Press, Beijing, China, 2011).
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will take the number of patent applications per 10,000 people as an independent variable to 
study whether it can enhance the city’s innovation power and then improve its TFP. The data 
on urban innovation vitality comes from the China City and Industrial Innovation Report 2017 
(Kou & Liu, 2017). Table 7 shows the impact of industrial robots on urban innovation vitality 
in columns (1)–(4). Statistically, the coefficient of robots on patents with different types is 
significantly positive at the statistical level of 1%, indicating that industrial robots will boost 
urban innovation vitality, which also verifies hypothesis 1.

Table 7. Mechanism analysis: Urban innovation

(1) (2) (3) (4)

Applied patents Invention patents Utility model patents Appearance design patents

Robot 9.0755***
(1.9109)

1.1532***
(0.3295)

4.6834***
(1.1262)

3.2389***
(0.6292)

Control YES YES YES YES
City-FE YES YES YES YES
Year-FE YES YES YES YES
N 3937 3937 3937 3937
R2 0.2999 0.2217 0.3278 0.1608

4.5.2. Industrial agglomeration

Through industrial agglomeration, which includes manufacturing, production service industry 
clusters, and industrial clusters, it is possible to grow urban TFP through learning, correla-
tion and competition effects. To test hypothesis 2, columns (1)–(3) of Table  8 present the 
estimations of industrial robots’ use in manufacturing, production service industry and their 
cooperative agglomeration, respectively. At the 1% statistical level, Robots are significantly 
associated with manufacturing agglomeration and collaborative agglomeration. On the con-
trary, in statistics, the contribution of robots to the aggregation effect of the service industry 
is obviously negative. The research results show that the use of industrial robots can effec-
tively promote manufacturing agglomeration, manufacturing and production service industry 
linkage aggregation, and have a radiation effect on it. Under the superimposed effect of 
the promotion of industrial robot technology, productive services radiate outward, and then 
promote the collaborative agglomeration of the manufacturing industry, which is conducive 
to alleviating the imbalance of China’s industrial structure and promoting the improvement 
of TFP in various regions of our country. The model tests hypothesis 2.

4.5.3. Technical progress and technical efficiency

Further decomposition of urban TFP into technological progress and technical efficiency is 
used to examine how industrial robots contribute to urban TFP. The effect of industrial robots 
on urban TFP is then studied. As can be seen from the column (4) of Table 8, statistically, 
applying industrial robots to improve technical efficiency yields a significant increase in 
technical efficiency at the statistical level of 1%. Column (5) of Table 8 shows that the coef-
ficient is significantly positive at the statistical level of 1%.
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The reasons for promoting technical efficiency and technological progress by applying 
industrial robots may be as follows: firstly, through robots adoption, the substitution of labor 
by industrial robots means technological progress, especially the substitution of low-skilled 
labor. Furthermore, R&D and production of the robot industry have high technical require-
ments, and the entire industrial robot industry will promote the technological level of other 
related industries. Secondly, robot adoption helps improve the technical level of the pro-
duction process. Finally, robot adoption through reconstruction and reorganization, optimal 
resource allocation, and improving management efficiency to improve the scale efficiency 
play a constructive role in advancing technical efficiency. This also confirms hypothesis 3.

Table 8. Mechanism analysis

(1) (2) (3) (4) (5)

magg sagg coagg Technical progress Technical efficiency

Robot 0.3840***
(0.0260)

–0.0805***
(0.0198)

0.3095***
(0.0263)

0.0078***
(0.0015)

0.0013***
(0.0003)

Control YES YES YES YES YES
City-FE YES YES YES YES YES
Year-FE YES YES YES YES YES
N 3937 3937 3937 3937 3937
R2 0.4668 0.0274 0.2064 0.7438 0.9304

5. Conclusions and policy implications

5.1. Conclusions

According to this paper’s econometric findings, the application of industrial robots fosters 
the increase of urban TFP. The results mentioned above are still valid when considering the 
model’s endogeneity. Mechanism analysis shows that industrial robots may improve urban 
TFP by stimulating innovation vitality, boosting industrial agglomeration, and improving 
technological progress and technical efficiency. According to these results, industrial robots 
have played a major role in boosting China’s urban economy’s quality development.

5.2. Policy implications

The policy implications are as follows:
First, the industrial robots should be moderately expanded according to each city’s factor 

endowment and industrial development reality to advance the growth of urban TFP more 
significantly. Support for industrial robot development through policy, optimize the industrial 
structure, raise the bar for human capital, advance modern education, foster the creation of 
industrial robots, promote the industrial robots and depth fusion, and play a better industrial 
robot lead role to the city’s total factor productivity. While introducing an industrial robot 
development support policy to cultivate and create a good development environment for 
industrial robot development.
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Second, considering the particularity of different regions and economic development 
levels, industrial robots, policy optimization, and industrial layout should be adopted. 
Therefore, a regional industrial robot industry development strategy should be implemented 
to enhance urban total factor productivity to complete regional coordination and superior 
regional economic development.

Finally, it is necessary to promote the deep integration of manufacturing and producer 
services and to improve their concentration level in order to increase urban total factor 
productivity through industrial robots. You can achieve this by integrating industrial robots 
into the supply chain, the value chain, and the industrial chain. For high-quality economic 
development, a government must emphasize the positive effect industrial agglomeration has 
on urban TFP.

Funding

This article was supported by the Fundamental Research Funds for the Central Universities 
“Research on the Impact of Industrial Robots on Total Factor Productivity” (Grant Number: 
2023lzujbkydx004).

Data availability

All data included in this study are available upon request by contact with the corresponding 
author.

Conflict of interests

The authors have no conflicts of interest to declare that are relevant to the content of this 
article.

Compliance of ethical standard

The authors have declared that no competing interests exist.
This article does not contain any studies with human participants performed by any of 

the authors.

References

Acemoglu, D., & Restrepo, P. (2018a). Low-skill and high-skill automation. Journal of Human Capital, 12(2), 
204–232. https://doi.org/10.1086/697242

Acemoglu, D., & Restrepo, P. (2018b). The race between man and machine: Implications of technology for 
growth, factor shares, and employment. American Economic Review, 108(6), 1488–1542. 
https://doi.org/10.1257/aer.20160696

Acemoglu, D., & Restrepo, P. (2020). Robots and jobs: Evidence from US labor markets. Journal of Political 
Economy, 128(6), 2188–2244. https://doi.org/10.1086/705716

https://doi.org/10.1086/697242
https://doi.org/10.1257/aer.20160696
https://doi.org/10.1086/705716


Technological and Economic Development of Economy, 2024, 30(5), 1330–1351 1349

Aghion, P., David, P. A., & Foray, D. (2009). Science, technology and innovation for economic growth: Link-
ing policy research and practice in ‘STIG Systems’. Research Policy, 38(4), 681–693. 
https://doi.org/10.1016/j.respol.2009.01.016

Aleksandrova, E., Behrens, K., & Kuznetsova, M. (2020). Manufacturing (co) agglomeration in a transition 
country: Evidence from Russia. Journal of Regional Science, 60(1), 88–128. 
https://doi.org/10.1111/jors.12436

Amri, F., Zaied, Y. B., & Lahouel, B. B. (2019). ICT, total factor productivity, and carbon dioxide emissions 
in Tunisia. Technological Forecasting and Social Change, 146, 212–217. 
https://doi.org/10.1016/j.techfore.2019.05.028

Bárány, Z.  L., & Siegel, C. (2018). Job polarization and structural change. American Economic Journal: 
Macroeconomics, 10(1), 57–89. https://doi.org/10.1257/mac.20150258

Beugelsdijk, S., Klasing, M. J., & Milionis, P. (2018). Regional economic development in Europe: The role 
of total factor productivity. Regional Studies, 52(4), 461–476. 
https://doi.org/10.1080/00343404.2017.1334118

Brynjolfsson, E., Rock, D., & Syverson, C. (2019). Artificial intelligence and the modern productivity para-
dox: A clash of expectations and statistics. In A. Agrawal, J. Gans, & A. Goldfarb (Eds.), The economics 
of artificial intelligence: An agenda (pp. 23–57). University of Chicago Press. 
https://doi.org/10.7208/chicago/9780226613475.003.0001

 Caragliu, A., & Del Bo, C. F. (2019). Smart innovative cities: The impact of smart city policies on urban 
innovation. Technological Forecasting and Social Change, 142, 373–383. 
https://doi.org/10.1016/j.techfore.2018.07.022

Cui, C., Yu, S., & Huang, Y. (2023). His house, her house? Gender inequality and homeownership among 
married couples in urban China. Cities, 134, Article 104187. https://doi.org/10.1016/j.cities.2022.104187

Dakpo,  K.  H., Desjeux,  Y., Jeanneaux,  P., & Latruffe,  L. (2019). Productivity, technical efficiency and 
technological change in French agriculture during 2002–2015: a Färe-Primont index decomposition 
using group frontiers and meta-frontier. Applied Economics, 51(11), 1166–1182. 
https://doi.org/10.1080/00036846.2018.1524982

Du, J., Liang, L., & Zhu, J. (2010). A slacks-based measure of super-efficiency in data envelopment analysis: 
A comment. European Journal of Operational Research, 204(3), 694–697. 
https://doi.org/10.1016/j.ejor.2009.12.007

Du, L., & Lin, W. (2022). Does the application of industrial robots overcome the Solow paradox? Evidence 
from China. Technology in Society, 68, Article 101932. https://doi.org/10.1016/j.techsoc.2022.101932

Fan, G., Wang, X. L., & Zhu, H. P. (2011). China marketization index: Report on the relative progress of 
marketization in various regions in 2011. Economic Science Press.

Fan, G., Wang, X., & Ma, G. (2012). The contribution of marketization to China’s economic growth. China 
Economist, 7(2), 4–14.

Ge, Y., & Chang, F. H. (2021). Productivity growth in Chinese cities: The agglomeration effect for cross-
regional industrial structures. Theoretical & Applied Economics, 29(4), 91–104. http://www.ebsco.ectap.
ro/Theoretical_&_Applied_Economics_2021_Winter.pdf#page=91

Huang, G., He, L. Y., & Lin, X. (2022). Robot adoption and energy performance: Evidence from Chinese 
industrial firms. Energy Economics, 107, Article 105837. https://doi.org/10.1016/j.eneco.2022.105837

Huang, J., Cai, X., Huang, S., Tian, S., & Lei, H. (2019). Technological factors and total factor productivity 
in China: Evidence based on a panel threshold model. China Economic Review, 54, 271–285. 
https://doi.org/10.1016/j.chieco.2018.12.001

International Federation of Robotics. (2020). IFR presents World Robotics Report 2020. https://ifr.org/ifr-
press-releases/news/record-2.7-million-robots-work-in-factories-around-the-globe

International Federation of Robotics. (n.d.). https://ifr.org/free-downloads/

https://doi.org/10.1016/j.respol.2009.01.016
https://doi.org/10.1111/jors.12436
https://doi.org/10.1016/j.techfore.2019.05.028
https://doi.org/10.1257/mac.20150258
https://doi.org/10.1080/00343404.2017.1334118
https://doi.org/10.7208/chicago/9780226613475.003.0001
https://doi.org/10.1016/j.techfore.2018.07.022
https://doi.org/10.1016/j.cities.2022.104187
https://doi.org/10.1080/00036846.2018.1524982
https://doi.org/10.1016/j.ejor.2009.12.007
https://doi.org/10.1016/j.techsoc.2022.101932
http://www.ebsco.ectap.ro/Theoretical_&_Applied_Economics_2021_Winter.pdf#page=91
http://www.ebsco.ectap.ro/Theoretical_&_Applied_Economics_2021_Winter.pdf#page=91
https://doi.org/10.1016/j.eneco.2022.105837
https://doi.org/10.1016/j.chieco.2018.12.001


1350 B. Li, C. Zhou. Robot adoption and urban total factor productivity: evidence from China

Kou, Z., & Liu, X. (2017). FIND report on city and industrial innovation in China. Fudan Institute of Indus-
trial Development, School of Economics, Fudan University, Shanghai, China. https://fddi.fudan.edu.
cn/fddien/main.htm

Krüger,  J.  J. (2008). Productivity and structural change: A review of the literature. Journal of Economic 
Surveys, 22(2), 330–363. https://doi.org/10.1111/j.1467-6419.2007.00539.x

Lan, X., Hu, Z., & Wen, C. (2023). Does the opening of high-speed rail enhance urban entrepreneurial 
activity? Evidence from China. Socio-Economic Planning Sciences, 88, Article 101604. 
https://doi.org/10.1016/j.seps.2023.101604

Li, Y., Zhang, Y., Pan, A., Han, M., & Veglianti, E. (2022). Carbon emission reduction effects of industrial 
robot applications: Heterogeneity characteristics and influencing mechanisms. Technology in Society, 
70, Article 102034. https://doi.org/10.1016/j.techsoc.2022.102034

Liu,  J., Chang, H., Forrest,  J. Y. L., & Yang, B. (2020). Influence of artificial intelligence on technological 
innovation: Evidence from the panel data of China’s manufacturing sectors. Technological Forecasting 
and Social Change, 158, Article 120142. https://doi.org/10.1016/j.techfore.2020.120142

Luo, S., Sun, Y., Yang, F., & Zhou, G. (2022). Does fintech innovation promote enterprise transformation? 
Evidence from China. Technology in Society, 68, Article 101821. 
https://doi.org/10.1016/j.techsoc.2021.101821

National Bureau of Statistics in China. (n.d.). Chinese Urban Statistical Yearbooks. https://www.stats.gov.
cn/english/

New First-tier Cities Research Institute. (n.d.). 2021 China City Business Charm Ranking List. https://www.
datayicai.com/report/detail/268

Nguyen,  T.  A., & Nguyen,  D.  A. (2018). The determinants of TFP at firm-level in Vietnam. Journal of 
International Economics and Management, 111, 36–53. https://jiem.ftu.edu.vn/index.php/jiem/article/
view/195

Pan, W., Xie, T., Wang, Z., & Ma, L. (2022). Digital economy: An innovation driver for total factor productivity. 
Journal of Business Research, 139, 303–311. https://doi.org/10.1016/j.jbusres.2021.09.061

Petralia, S. (2020). Mapping general purpose technologies with patent data. Research Policy, 49(7), Article 
104013. https://doi.org/10.1016/j.respol.2020.104013

Ramachandran, R., Reddy, K., & Sasidharan, S. (2020). Agglomeration and productivity: Evidence from Indian 
manufactuaring. Studies in Microeconomics, 8(1), 75–94. https://doi.org/10.1177/2321022220923211

Rawat, P. S., & Sharma, S. (2021). TFP growth, technical efficiency and catch-up dynamics: Evidence from 
Indian manufacturing. Economic Modelling, 103, Article 105622. 
https://doi.org/10.1016/j.econmod.2021.105622

Roszko-Wójtowicz, E., Grzelak, M. M., & Laskowska,  I. (2019). The impact of research and development 
activity on the TFP level in manufacturing in Poland. Equilibrium. Quarterly Journal of Economics and 
Economic Policy, 14(4), 711–737. https://doi.org/10.24136/eq.2019.033

Saleem,  H., Shahzad,  M., Khan,  M.  B., & Khilji,  B.  A. (2019). Innovation, total factor productivity and 
economic growth in Pakistan: A policy perspective. Journal of Economic Structures, 8(1), 1–18. 
https://doi.org/10.1186/s40008-019-0134-6

Solow, R. M. (1957). Technical change and the aggregate production function. The Review of Economics 
and Statistics, 39(3), 312–320. https://doi.org/10.2307/1926047

Tao, C. Q., Yi, M. Y., & Wang, C. S. (2023). Coupling coordination analysis and spatiotemporal heterogeneity 
between data elements and green development in China. Economic Analysis and Policy, 77, 1–15. 
https://doi.org/10.1016/j.eap.2022.10.014

Van Neuss, L. (2019). The drivers of structural change. Journal of Economic Surveys, 33(1), 309–349. 
https://doi.org/10.1111/joes.12266

https://doi.org/10.1111/j.1467-6419.2007.00539.x
https://doi.org/10.1016/j.seps.2023.101604
https://doi.org/10.1016/j.techsoc.2022.102034
https://doi.org/10.1016/j.techfore.2020.120142
https://doi.org/10.1016/j.techsoc.2021.101821
https://www.datayicai.com/report/detail/268
https://www.datayicai.com/report/detail/268
https://jiem.ftu.edu.vn/index.php/jiem/article/view/195
https://jiem.ftu.edu.vn/index.php/jiem/article/view/195
https://doi.org/10.1016/j.jbusres.2021.09.061
https://doi.org/10.1016/j.respol.2020.104013
https://doi.org/10.1177/2321022220923211
https://doi.org/10.1016/j.econmod.2021.105622
https://doi.org/10.24136/eq.2019.033
https://doi.org/10.1186/s40008-019-0134-6
https://doi.org/10.2307/1926047
https://doi.org/10.1016/j.eap.2022.10.014
https://doi.org/10.1111/joes.12266


Technological and Economic Development of Economy, 2024, 30(5), 1330–1351 1351

Wang, J., Sun, F., Lv, K., & Wang, L. (2022). Industrial agglomeration and firm energy intensity: How im-
portant is spatial proximity? Energy Economics, 112, Article 106155. 
https://doi.org/10.1016/j.eneco.2022.106155

Wang, P. (2019). On defining artificial intelligence. Journal of Artificial General Intelligence, 10(2), 1–37. 
https://doi.org/10.2478/jagi-2019-0002

Wang, R., & Feng, Y. (2021). Research on China’s agricultural carbon emission efficiency evaluation and 
regional differentiation based on DEA and Theil models. International Journal of Environmental 
Science and Technology, 18, 1453–1464. https://doi.org/10.1007/s13762-020-02903-w

Wang, S. L., Tuan, F., Gale, F., Somwaru, A., & Hansen, J. (2013). China’s regional agricultural productivity 
growth in 1985–2007: A multilateral comparison. Agricultural Economics, 44(2), 241–251. 
https://doi.org/10.1111/agec.12008

Wei, W., Zhang, W.  L., Wen,  J., & Wang,  J.  S. (2020). TFP growth in Chinese cities: The role of factor-
intensity and industrial agglomeration. Economic Modelling, 91, 534–549. 
https://doi.org/10.1016/j.econmod.2019.12.022

While, A. H., Marvin, S., & Kovacic, M. (2021). Urban robotic experimentation: San Francisco, Tokyo and 
Dubai. Urban Studies, 58(4), 769–786. https://doi.org/10.1177/0042098020917790

Wu, H., Hao, Y., & Ren, S. (2020). How do environmental regulation and environmental decentralization 
affect green total factor energy efficiency: Evidence from China. Energy Economics, 91, Article 104880. 
https://doi.org/10.1016/j.eneco.2020.104880

Zhang, D. (2021). Marketization, environmental regulation, and eco-friendly productivity: A Malmquist-
Luenberger index for pollution emissions of large Chinese firms. Journal of Asian Economics, 76, 
Article 101342. https://doi.org/10.1016/j.asieco.2021.101342

Zhang, J. (2008). Estimation of China’s provincial capital stock (1952–2004) with applications. Journal of 
Chinese Economic and Business Studies, 6(2), 177–196. https://doi.org/10.1080/14765280802028302

Zhao, X., Nakonieczny, J., Jabeen, F., Shahzad, U., & Jia, W. (2022). Does green innovation induce green 
total factor productivity? Novel findings from Chinese city level data. Technological Forecasting and 
Social Change, 185, Article 122021. https://doi.org/10.1016/j.techfore.2022.122021

Zhou, C., & Li, B. (2023). How does e-commerce demonstration city improve urban innovation? Evidence 
from China. Economics of Transition and Institutional Change, 31(4), 915–940. 
https://doi.org/10.1111/ecot.12361

https://doi.org/10.1016/j.eneco.2022.106155
https://doi.org/10.2478/jagi-2019-0002
https://doi.org/10.1007/s13762-020-02903-w
https://doi.org/10.1111/agec.12008
https://doi.org/10.1016/j.econmod.2019.12.022
https://doi.org/10.1177/0042098020917790
https://doi.org/10.1016/j.eneco.2020.104880
https://doi.org/10.1016/j.asieco.2021.101342
https://doi.org/10.1080/14765280802028302
https://doi.org/10.1016/j.techfore.2022.122021
https://doi.org/10.1111/ecot.12361

