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Abstract. The theory of interval-valued intuitionistic fuzzy sets provides an intuitive and feasible 
way of addressing uncertain and ambiguous properties. Many useful models and methods have 
been developed for multiple criteria decision analysis within the interval-valued intuitionistic fuzzy 
environment. In contrast to the elaborate existing methods, this paper establishes a simple and 
effective method for managing the sophisticated data expressed by interval-valued intuitionistic 
fuzzy sets. An inclusion comparison possibility defined on interval-valued intuitionistic fuzzy sets 
is proposed, and some important properties are investigated. Then, an inclusion-based index that 
considers positive and negative ideals is offered. Considering the maximal comprehensive inclu-
sion-based indices, this paper constructs a linear programming model (for consistent information) 
and an integrated, nonlinear programming model (for inconsistent information) to estimate the 
criterion weights and the optimal ranking order of the alternatives under an incomplete preference 
structure. The feasibility of the proposed method is illustrated by a practical example of selecting 
a suitable bridge construction method, and a comparative analysis with other relevant methods is 
conducted to validate the effectiveness and applicability of the proposed methodology.

Keywords: interval-valued intuitionistic fuzzy set, multiple criteria decision analysis, inclusion 
comparison possibility, inclusion-based index, incomplete preference structure.

JEL Classification: C44, D81, R42.

Introduction

Multiple criteria decision analysis (MCDA) problems are common. Because uncertainty 
always exists, modeling uncertainty in subjective human management becomes increasingly 
important in decision analysis. The theory of fuzzy sets is a useful way to manage uncertainty 
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or imprecision arising from mental phenomena in decision making. However, in reality, the 
evaluation of membership values may not always be certain. There may be some degree of 
hesitation between membership and non-membership. Intuitionistic fuzzy sets (IFSs), which 
were introduced by Atanassov (1983, 1986), are appropriate for addressing the problem of 
insufficient information. Importantly, IFSs are mathematically equivalent to interval-valued 
fuzzy sets (Deschrijver, Kerre 2007). Nevertheless, IFSs and interval-valued fuzzy sets are 
different because they are based on different semantics and have distinct backgrounds and 
practical applicability (Atanassov 2005; Dubois et al. 2005; Deschrijver, Kerre 2007; Li 2012a). 
Li (2005) first developed MCDA models and methods using IFSs. He introduced intuitionis-
tic fuzzy MCDA problems and constructed several linear programming models to generate 
optimal criteria weights. At present, the IFS theory has been successfully applied to MCDA 
and group decision-making problems (Li 2010a; Li et al. 2010; Zhang, Liu 2010; Li 2011a; 
Wei et al. 2012). Atanassov and Gargov (1989) introduced the concept of interval-valued 
intuitionistic fuzzy sets (IVIFSs), which are a generalization of IFSs. IVIFSs are characterized 
by membership and non-membership functions whose values are intervals rather than exact 
numbers. Li (2012b) developed the representation theorem and extension principles for IFSs. 
Li (2011b) proposed the representation theorem of IVIFSs using the concept of level sets. In 
addition, the algebraic operations over IVIFSs were defined based on the extension principle. 
IVIFSs have received more attention because of their superior ability to handle imprecise 
and ambiguous information in real-world applications.

IVIFSs have been widely used in the MCDA field, and substantial research has been 
devoted to enriching the development of decision-making models and methods within the 
IVIFS environment. Li (2010b) developed a nonlinear programming methodology, based 
on the technique for order preference by similarity to ideal solution (TOPSIS), to solve 
MCDA problems using ratings of alternatives together with the criterion weights expressed 
by IVIFSs. Li (2010c) proposed a mathematical-programming methodology of matrix games 
with payoffs represented by IVIFSs. Nayagam et al. (2011) introduced a new accuracy func-
tion and proposed an MCDA method based on IVIFSs. Chen and Yang (2011) established 
optimization models to determine the criterion weights under incomplete information and 
developed group decision-making methods for IVIFS settings. Chen et al. (2011) proposed 
a group decision-making method based on interval-valued intuitionistic fuzzy preference 
relation matrices and aggregation operators. Ye (2012) developed the concept of the reduct 
IFSs of IVIFSs with respect to adjustable weight vectors; this author also developed the Dice 
similarity measure, based on the reduct IFSs, to explore the effects of optimism, neutralism, 
and pessimism in decision making. Combining the interval-valued intuitionistic fuzzy 
geometric aggregation operator with the Choquet integral-based Hamming distance, Tan 
(2011) developed an extension of the TOPSIS method for solving group decision-making 
problems. Park et al. (2011) also extended the TOPSIS method to solve multiple criteria 
group decision-making problems within the IVIFS environment. Based on the concept 
of relative closeness coefficients, Li (2011c) developed auxiliary nonlinear programming 
models to solve MCDA problems with IVIFSs. Wei et al. (2011) introduced a correlation 
and correlation coefficients for IVIFSs and then established an optimization model, based 
on the negative ideal solution and a max-min operator, to solve MCDA problems. Based on 
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the concepts of relative closeness coefficients and weighted Euclidean distances, Wang et al. 
(2013) constructed a pair of nonlinear programming models for MCDA using IVIFSs. Wei 
and Zhao (2012) introduced the induced intuitionistic fuzzy correlated averaging operator and 
the induced intuitionistic fuzzy correlated geometric operator to develop an MCDA method 
based on IVIFSs. Chen and Yang (2012) considered the risk attitude of the decision maker to 
define a new class of decision functions and to solve MCDA problems with interval-valued 
intuitionistic fuzzy information.

Li (2011c) first proposed the concept of an inclusion comparison probability to compare 
the closeness IFSs. Li (2010d) defined the likelihood that one alternative is not inferior to 
another. Next, he constructed a likelihood matrix and determined the optimal degrees of 
membership for ranking the alternatives. Wang et al. (2013) also used the concept of inter-
val number likelihood to generate a ranking order of alternatives. Li (2011c) extended the 
likelihood measure to define an inclusion comparison probability, allowing comparisons 
between alternatives. Similar to Szmidt and Kacprzyk (2001), Li (2011c) regarded the inclu-
sion relation between the closeness IFSs as an intuitionistic fuzzy event from a probability 
viewpoint. He then defined the inclusion comparison probability and investigated its useful 
and other important properties.

MCDA methods with IVIFSs have been extensively studied in the past. However, little 
research has utilized the inclusion comparison-based approach (e.g., the employment of 
likelihood measures or inclusion comparison probabilities) to handle interval-valued intu-
itionistic fuzzy MCDA problems. That is, in regard to the existing MCDA techniques with 
IVIFSs, the inclusion comparison-based approach has not been the core of decision-making 
methodologies. Although Li (2011c) utilized the concept of inclusion comparison probabilities 
in his proposed closeness coefficient-based nonlinear programming method, his developed 
inclusion comparison probability is still defined upon IFSs, not IVIFSs. Considering the 
advantages of the inclusion comparison probability on IFSs, this paper extends the concept 
to propose an inclusion comparison possibility within the interval-valued intuitionistic 
fuzzy decision environment. This paper presents the concept of the lower and upper inclu-
sion comparison possibilities defined on IVIFSs and then determines an interval-valued 
intuitionistic fuzzy inclusion comparison possibility. Additionally, we propose a novel way 
to incorporate inclusion comparison possibilities into the core structure of TOPSIS, which 
is new and different from those methods that have been previously developed.

The purpose of this paper is to develop a novel interval-valued intuitionistic fuzzy MCDA 
method by using inclusion comparison possibilities defined on IVIFSs. In a manner similar to 
TOPSIS, an inclusion-based index that considers positive and negative ideals is proposed. In 
view of diversiform preference types, we represent the various forms of preference structures of 
the decision maker. Next, we advance an inclusion comparison possibility approach to develop 
a new MCDA method, including programming models for assessing criterion weights with 
incomplete information and for handling decision-making problems in the IVIFS context.

This article is organized as follows: Section  1 briefly reviews concepts of IVIFSs and 
formulates an MCDA problem with IVIFS data. Section 2 proposes inclusion comparison 
possibilities for the IVIFS environment and investigates several important properties of the 
proposed measures. Section 3 proposes the concept of the inclusion-based index and develops 
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an MCDA method using an inclusion comparison possibility approach for managing inter-
val-valued intuitionistic fuzzy decision making with incomplete preference information. In 
addition, this section constructs linear and nonlinear programming models for consistent 
and inconsistent preference structures, respectively, to determine the criterion weights 
under limited weight information. Section 4 examines the feasibility and applicability of 
the proposed method by illustrating how it can be applied to a selection problem for bridge 
construction methods. This section also provides a comparative analysis with the widely used 
fuzzy TOPSIS method and the closeness coefficient-based nonlinear programming method 
(Li 2011c). Finally, the last Section presents our conclusions.

1. Decision environment on IVIFSs

Before formulating a decision environment based on IVIFSs, we first briefly review the basic 
concept of IVIFSs.

Definition 1. Let Int([0, 1]) denote the set of all closed subintervals of [0, 1]. Let X be an 
ordinary finite, nonempty set. An IVIFS A  in X is defined as:

	 { }, ( ), ( )A AA x x x x X= µ ν ∈
 

 ,	 (1)

where the functions Aµ  : X→Int([0, 1]) ( ( ) [0,1]Ax X x∈ →µ ⊆


) and Aν  : X→Int([0, 1]) 
( ( ) [0,1]Ax X x∈ →ν ⊆



) define the intervals of the degree of membership and the degree 
of non-membership of the element x X∈  to the set A , respectively, and for every x X∈ , 
0 sup{ ( )} sup{ ( )} 1A Ax x≤ µ + ν ≤

 

.
Definition 2. For every IVIFS A  in X, ( )A xµ



 and ( )A xν


 are closed intervals rather than 
real numbers, and their lower and upper boundaries are denoted by ( )A x−µ



, ( )A x+µ


, ( )A x−ν


, 
and ( )A x+ν



, respectively. Then, A  can be expressed as follows:

	 { },[ ( ), ( )],[ ( ), ( )]A AA AA x x x x x x X− + − += µ µ ν ν ∈
 

 

 ,	 (2)

where the expression is subject to the condition 0 ( ) ( ) 1A Ax x+ +≤ µ + ν ≤
 

.
For every x X∈ , the hesitation interval relative to A  is computed as:

	 ( ) [ ( ), ( )] [1 ( ) ( ),1 ( ) ( )]A A A AA A Ax x x x x x x− + + + − −π = π π = −µ −ν −µ −ν
   

  

.	 (3)

If ( ) ( ) ( )A A Ax x x− +µ = µ = µ
 



 and ( ) ( ) ( )A A Ax x x− +ν = ν = ν
 



, then the given IVIFS A  is re-
duced to an ordinary IFS. For convenience of notation, the set of all IVIFSs in X is denoted 
by IVIFS(X). Let xA  denote a value of IVIFS A  where:

	 ( ( ), ( )) ([ ( ), ( )],[ ( ), ( )])x A A A AA AA x x x x x x− + − += µ ν = µ µ ν ν
   

 

 .	 (4)

To consider an MCDA problem, the method of evaluating alternatives and making 
decisions is guided by the subjective judgments of the decision maker. Thus, the ratings of 
alternative evaluations used in MCDA can be reasonably considered to be expressed as IVIFSs. 
Let A1, A2,  , and Am represent the non-dominated alternatives from which a decision maker 
must choose, where m represents the number of alternatives, and let A (={ }1 2, , , mA A A ) 
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be an alternative set. Let x1, x2, ..., and xn represent the criteria with which the alternative 
performances are measured, where n represents the number of criteria. Moreover, denote X 
(={ }1 2, , , nx x x ) as a criterion set. In general, the criterion set X can be divided into two 
sets, Xb and Xc, where Xb denotes a collection of benefit criteria, Xc denotes a collection of 
cost criteria, b cX X∩ =∅ , and b cX X X∪ = .

Let ijA  denote the evaluation of the alternative iA A∈  (i = 1, 2,  , m) with respect to 
the criterion jx X∈  (j = 1, 2, ..., n). Then, ijA  can be expressed as the following:

	 ( )( , ) [ , ],[ , ]ij ij ij ij ij ij ijA − + − += µ ν = µ µ ν ν ,	 (5)

where ( [ , ])ij ij ij
− +µ = µ µ  represents the interval of the membership degree for which alternative 

Ai satisfies criterion xj and ( [ , ])ij ij ij
− +ν = ν ν  indicates the interval of the non-membership degree 

for which alternative Ai does not satisfy criterion xj given by the decision maker. For every 
iA A∈  and jx X∈ , the hesitation interval of ijA  is computed as follows:

	 [ , ] [1 ,1 ]ij ij ij ij ij ij ij
− + + + − −π = π π = −µ −ν −µ −ν .	 (6)

The characteristics of the alternative Ai can be represented by the IVIFS in the following 
manner:

	
{ }

( ){ }
1 1 1 2 2 2,( , ) , ,( , ) , , ,( , )

   , [ , ],[ , ] , 1, 2, , ,   1, 2, , .

i i i i i n in in

j ij ij ij ij j

A x x x

x x X j n i m− + − +

= µ ν µ ν µ ν =

µ µ ν ν ∈ = =





 

	 (7)

An interval-valued intuitionistic fuzzy decision matrix D  is expressed as follows:

	

1 2

11 12 11

2 21 22 2

1 2

                              n

n

n

m m m mn

x x x

A A AA
A A A A

D

A A A A

 
 
 =  
 
  



  



  







   

  



.	 (8)

2. Inclusion comparison possibility on IVIFSs

To make a comparison between IVIFSs, we extended the inclusion comparison probability 
introduced by Li (2011c) to the interval-valued intuitionistic fuzzy decision environment. 
Let Aρ  and 'Aρ  be two alternatives in the alternative set A. Denote jAρ

  and ' jAρ
  as the 

evaluation values of alternatives Aρ  and 'Aρ , respectively, with respect to criterion xj, and:

	 ( )( , ) [ , ],[ , ]j j j j j j jA − + − +
ρ ρ ρ ρ ρ ρ ρ= µ ν = µ µ ν ν ,	 (9)

	 ( )' ' ' ' '' '( , ) [ , ],[ , ]j j j j jj jA − + − +
ρ ρ ρ ρ ρρ ρ= µ ν = µ µ ν ν .	 (10)

The binary relation of “ 'j jA Aρ ρ⊇  ” is equivalently written as 'j j
− −
ρ ρµ ≥ µ , 'j j

+ +
ρ ρµ ≥ µ ,

'j j
− −
ρ ρν ≤ ν , and 'j j

+ +
ρ ρν ≤ ν  according to the inclusion relation of IVIFSs. Considering 
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“ 'j jA Aρ ρ⊇  ” as an interval-valued intuitionistic fuzzy event, we can compare jAρ  and ' jAρ  by 
computing the possibility of the inclusion comparison event of jAρ

  and ' jAρ
 . The possibility of 

the interval-valued intuitionistic fuzzy event “ 'j jA Aρ ρ⊇  ”, denoted by '( )j jp A Aρ ρ⊇  , is called 

the inclusion comparison possibility of jAρ
  and ' jAρ

 . We determine '( )j jp A Aρ ρ⊇   by using 

the lower and upper inclusion comparison possibilities '( )j jp A A−
ρ ρ⊇   and '( )j jp A A+

ρ ρ⊇  , 
respectively, of jAρ

  and ' jAρ
 .

Definition 3. Let ( )[ , ],[ , ]j j j j jA − + − +
ρ ρ ρ ρ ρ= µ µ ν ν  and ( )' ' '' '[ , ],[ , ]j j jj jA − + − +

ρ ρ ρρ ρ= µ µ ν ν  be any 

two values of IVIFSs defined on X, where 0 1j j
+ +
ρ ρ≤ µ + ν ≤  and ' '0 1j j

+ +
ρ ρ≤ µ + ν ≤ . The lower 

inclusion comparison possibility '( )j jp A A−
ρ ρ⊇   of jAρ

  and ' jAρ
  is defined as:

	
( )

( ) ( )
'

'
''

1
( ) max 1 max ,0 ,0

1 1

j j
j j

j j jj

p A A
− −
ρ ρ−

ρ ρ − + + −
ρ ρ ρρ

  − ν −µ   ⊇ = −   
−µ −ν + −µ −ν     

  .	 (11)

The upper inclusion comparison possibility '( )j jp A A+
ρ ρ⊇   is defined as:

	
( )

( ) ( )
'

'
' '

1
( ) max 1 max ,0 ,0

1 1

jj
j j

j j j j

p A A
+ +

ρρ+
ρ ρ + − − +

ρ ρ ρ ρ

  − ν −µ   ⊇ = −   
−µ −ν + −µ −ν     

  .	 (12)

Property 1. Let ( )[ , ],[ , ]j j j j jA − + − +
ρ ρ ρ ρ ρ= µ µ ν ν  and ( )' ' '' '[ , ],[ , ]j j jj jA − + − +

ρ ρ ρρ ρ= µ µ ν ν  be any 

two values of IVIFSs defined on X. The lower and upper inclusion comparison possibilities 

'( )j jp A A−
ρ ρ⊇   and '( )j jp A A+

ρ ρ⊇  , respectively, of jAρ
  and ' jAρ

  satisfy the following 
properties:

(P1.1) '0 ( ) 1j jp A A−
ρ ρ≤ ⊇ ≤  ;

(P1.2) '0 ( ) 1j jp A A+
ρ ρ≤ ⊇ ≤  ;

(P1.3) ' '( ) ( )j j j jp A A p A A− +
ρ ρ ρ ρ⊇ ≤ ⊇    ;

(P1.4) ' '( ) ( ) 1j j j jp A A p A A− +
ρ ρ ρ ρ⊇ + ⊇ =    .

Proof. See Appendix I. 

Definition 4. Let ( )[ , ],[ , ]j j j j jA − + − +
ρ ρ ρ ρ ρ= µ µ ν ν  and ( )' ' '' '[ , ],[ , ]j j jj jA − + − +

ρ ρ ρρ ρ= µ µ ν ν  be any 

two values of IVIFSs defined on X. The inclusion comparison possibility '( )j jp A Aρ ρ⊇   of 

jAρ
  and ' jAρ

  is defined as follows:

	 ( )' ' '
1( ) ( ) ( )
2j j j j j jp A A p A A p A A− +

ρ ρ ρ ρ ρ ρ⊇ = ⊇ + ⊇      .	 (13)

That is, jAρ
  is not smaller than ' jAρ

  to the degree of '( )j jp A Aρ ρ⊇  .
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Property 2. Let ( )[ , ],[ , ]j j j j jA − + − +
ρ ρ ρ ρ ρ= µ µ ν ν  and ( )' ' '' '[ , ],[ , ]j j jj jA − + − +

ρ ρ ρρ ρ= µ µ ν ν  be any 

two values of IVIFSs defined on X. The inclusion comparison possibility '( )j jp A Aρ ρ⊇   of 

jAρ
  and ' jAρ

  satisfies the following properties:

(P2.1) '0 ( ) 1j jp A Aρ ρ≤ ⊇ ≤  ;

(P2.2) '( ) 0j jp A Aρ ρ⊇ =   if '1 j j
− −
ρ ρ− ν ≤ µ ;

(P2.3) '( ) 1j jp A Aρ ρ⊇ =   if '1j j
− −
ρ ρµ ≥ −ν ;

(P2.4) ' '( ) ( ) 1j j j jp A A p A Aρ ρ ρ ρ⊇ + ⊆ =    ;

(P2.5) ' '( ) ( ) 0.5j j j jp A A p A Aρ ρ ρ ρ⊇ = ⊆ =     if ' '( ) ( )j j j jp A A p A Aρ ρ ρ ρ⊇ = ⊆    ;

(P2.6) '( ) 0.5j jp A Aρ ρ⊇ ≥   if "( ) 0.5j jp A Aρ ρ⊇ ≥   and " '( ) 0.5j jp A Aρ ρ⊇ ≥  .

Proof. See Appendix II. 
If jAρ
  and ' jAρ

  reduce to IFSs, the inclusion comparison possibility of jAρ
  and ' jAρ

  
becomes the following:

	
( )

( ) ( )
'

'
' '

1
( ) max 1 max ,0 ,0

1 1

jj
j j

j j j j

p A A
ρρ

ρ ρ
ρ ρ ρ ρ

  − ν −µ   ⊇ = −   
−µ −ν + −µ −ν     

  .	 (14)

The above formula is the same as the definition provided by Li (2011c).

3. MCDA method with inclusion comparison possibilities

This section applies the concept of inclusion comparison possibilities to develop a new 
MCDA method within the IVIFS environment under incomplete preference informa-
tion. Anchor dependency is common in decision making: when the decision maker 
must make assessments, he/she tends to anchor the judgments to points of reference. 
Thus, the concepts of positive-ideal and negative-ideal solutions and their displacements 
facilitate the rationale underlying human decision-making processes. The displacement 
of positive and negative ideals may affect the contrast of currently achievable perfor-
mance among alternatives. Accordingly, it is necessary to incorporate displaced ideals 
and anchor dependency into decision analysis. In this paper, we utilize the concept of 
inclusion comparison possibilities to propose an inclusion-based index considering both 
positive and negative ideals.

3.1. The proposed method

Regarding the MCDA problem based on IVIFSs, recall that Xb and Xc are collections of benefit 
and cost criteria, respectively. The interval-valued intuitionistic fuzzy positive-ideal solution, 
denoted as *A , is defined as follows:



T.-Y. Chen.  An inclusion comparison approach for multiple criteria decision analysis...364

	
{ }

( ){ }
* 1 *1 *1 2 *2 *2 * *

* ** *

,( , ) , ,( , ) , , ,( , )

   , [ , ],[ , ] , 1,2, , ,

n n n

j j j jj j

A x x x

x x X j n− + − +

= µ ν µ ν µ ν =

µ µ ν ν ∈ =







	 (15)

where

	
* *[ , ] max , min ,

                 max , min ,

j ij j b ij j cj ii

ij j b ij j cii

x X x X

x X x X

− + − −

+ +

    µ µ = µ ∈ µ ∈    
   

    µ ∈ µ ∈    
   

	 (16)

	
* *[ , ] min , max ,

                min , max .

j ij j b ij j cj i i

ij j b ij j ci i

x X x X

x X x X

− + − −

+ +

   ν ν = ν ∈ ν ∈    
    

   ν ∈ ν ∈    
    

	 (17)

For convenience, let * * *( [ , ])j j j
− +µ = µ µ  and * * *( [ , ])j j j

− +ν = ν ν . Then, the evaluation of the 
positive-ideal solution with respect to xj is given by:

	 ( )* * * * ** *( , ) [ , ],[ , ]j j j j jj jA − + − += µ ν = µ µ ν ν .	 (18)

The interval-valued intuitionistic fuzzy negative-ideal solution, denoted as A−
 , is defined 

as follows:

	
{ }

( ){ }
1 1 1 2 2 2,( , ) , ,( , ) , , ,( , )

    , [ , ],[ , ] , 1,2, , ,

n n n

j j j j j j

A x x x

x x X j n

− − − − − − −

− + − +
− − − −

= µ ν µ ν µ ν =

µ µ ν ν ∈ =







	 (19)

where

	
[ , ] min , max ,

                  min , max ,

j j ij j b ij j ci i

ij j b ij j ci i

x X x X

x X x X

− + − −
− −

+ +

   µ µ = µ ∈ µ ∈    
    

   µ ∈ µ ∈    
    

	 (20)

	
[ , ] max , min ,

                 max , min .

j j ij j b ij j cii

ij j b ij j cii

x X x X

x X x X

− + − −
− −

+ +

    ν ν = ν ∈ ν ∈    
   

    ν ∈ ν ∈    
   

	 (21)

Let ( [ , ])j j j
− +

− − −µ = µ µ  and ( [ , ])j j j
− +

− − −ν = ν ν  for brevity. Thus, the evaluation of the neg-
ative-ideal solution in terms of xj is given by:

	 ( )( , ) [ , ],[ , ]j j j j j j jA − + − +
− − − − − − −= µ ν = µ µ ν ν .	 (22)

To define an inclusion-based index, we first acquire the inclusion comparison possibility 
between evaluations of each alternative and the positive-ideal/negative-ideal solutions. For 
every iA A∈  and j bx X∈ , we calculate the inclusion comparison possibility *( )j ijp A A⊇   
that ijA  is not larger than * jA  and the possibility ( )ij jp A A−⊇   that ijA  is not smaller than 
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jA−
 . The alternative Ai  produces good performance on the benefit criterion xj if the evaluation 

ijA  has a low possibility of being inferior to * jA  and a high possibility of being superior to 

jA−
 . In contrast, we compute *( )ij jp A A⊇   that ijA  is not smaller than * jA  and ( )j ijp A A− ⊇   

that ijA  is not larger than jA−
  for every iA A∈  and j cx X∈ . The alternative Ai performs 

well on the cost criterion xj when the evaluation ijA  has a low possibility of being farther 
from * jA  and a high possibility of being farther from jA−

 . Following the above discussion, 
the inclusion-based index ( )ijI A  of ijA  is defined as follows:

	 *

*

( )
  if  ,

( ) ( )
( )

( )
  if  ,

( ) ( )

ij j
j b

j ij ij j
ij

j ij
j c

ij j j ij

p A A
x X

p A A p A A
I A

p A A
x X

p A A p A A

−

−

−

−

 ⊇
 ∈

⊇ + ⊇
= 

⊇ ∈ ⊇ + ⊇

 

   



 

   

	 (23)

where 0 ( ) 1ijI A≤ ≤  for every iA A∈  and jx X∈ . The higher the inclusion-based index 
( )ijI A  is, the better the evaluation ijA .

Let wj be the importance weight wj of each criterion jx X∈  satisfying the following 

normalization conditions: [0,1]jw ∈  ( 1,2, ,j n=  ) and 1 1n
jj w= =∑ . Let Γ0 denote a set of 

all weight vectors such that:

	 { }0 1 2 1( , , , ) 0 ( 1,2, , ),  1n
n j jjw w w w j n w=Γ = ≥ = =∑  .	 (24)

Considering the importance weights of various criteria, the comprehensive inclu-
sion-based index ( )iCI A  of the characteristics iA  for the alternative Ai is:

	
1

( ) ( )
n

i ij j
j

CI A I A w
=

= ⋅∑  .	 (25)

Because the decision maker may not be willing or able to specify his/her preferences in 
the detailed manner required by this theoretical methodology, unknown and incomplete (i.e., 
imprecise or partial) information is a likely parameter in many MCDA problems (Han, Liu 
2011). In general, incomplete information about criterion weights provided by the decision 
maker can be constructed by using several basic ranking forms (Park 2004; Park et al. 2009, 
2011; Li 2011c; Wei et al. 2011). Following the definitions proposed by Xu and Chen (2008) 
and Li (2011c), we considered five basic ranking forms of incomplete information about 
criterion weights:

(i) A weak ranking:

	 { }1 21 1 2 0 1 1 2 1( , , , )  for all   and  n j jw w w w w j jΓ = ∈Γ ≥ ∈ϒ ∈Λ ,	 (26)

where 1ϒ  and 1Λ  are two disjoint subsets of the subscript index set N= {1,2, , }n  of all criteria.
(ii) A strict ranking:

	 { }1 2 1 22 1 2 0 1 2 2 2( , , , )  for all   and  n j j j jw w w w w j jΓ = ∈Γ − ≥ δ ∈ϒ ∈Λ ,	 (27)
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where 
1 2j jδ  is a constant that satisfies the condition 

1 2
0j jδ > , and 2ϒ  and 2Λ are two dis-

joint subsets of N.
(iii) A ranking of differences (or strength of preference):

{ }1 2 2 33 1 2 0 1 3 2 3 3 3( , , , )  for all  ,  ,  and  n j j j jw w w w w w w j j jΓ = ∈Γ − ≥ − ∈ϒ ∈Λ ∈Ω ,	(28)

where 3ϒ , 3Λ , and 3Ω  are three disjoint subsets of N.
(iv) An interval bound:

	 { }1 1 1 14 1 2 0 1 4( , , , )  for all  n j j j jw w w w jΓ = ∈Γ δ + ε ≥ ≥ δ ∈ϒ ,	 (29)

where 
1

0jδ ≥  and 
1

0jε ≥  are constants that satisfy the condition 
1 1 1

0 1j j j≤ δ ≤ δ + ε ≤ , and 
4ϒ  is a subset of N.

(v) A ratio bound (or a ranking with multiples):

	 { }1 1 2 25 1 2 0 1 5 2 5( , , , )  for all   and  n j j j jw w w w w j jΓ = ∈Γ ≥ δ ⋅ ∈ϒ ∈Λ ,	 (30)

where 
12jδ  is a constant that satisfies the condition 

12
0 1j≤ δ ≤ , and 5ϒ  and 5Λ are two 

disjoint subsets of N.
The decision maker can provide criteria preferences using one of the five basic ranking 

forms. Let G denote a set of the known information about the criterion weights provided by 
the decision maker, where the known information structure G consists of the preceding five 
sets Γ1, Γ2, , and G5. That is,

	 1 2 3 4 5Γ = Γ ∪Γ ∪Γ ∪Γ ∪Γ .	 (31)

Considering different types of incomplete preference information, the optimal weight 
values of the criteria for each alternative Ai can be determined via the following linear pro-
gramming model:

	 [M1]  1

1 2

max ( ) ( )

s.t.    ( , , , ) ,

n

i ij j
j

n

CI A I A w

w w w
=

  = ⋅ 
  

∈Γ

∑ 



	 (32)

for each i = 1, 2, ..., m.
In total, m linear programming models need to be solved. However, the optimal solutions 

of [M1] for the m alternatives may be generally different. Thus, a straight-forward com-
parison between various alternatives is difficult. That is, the corresponding comprehensive 
inclusion-based indices of all m alternatives cannot be compared. Because the decision 
maker cannot easily judge the preference relations among all non-dominated alternatives, 
we aggregate the m linear programming models in [M1] as follows:

	 [M2]  1 1 1

1 2

max ( ) ( )

s.t.    ( , , , ) .

m m n

i ij j
i i j

n

CI A I A w

w w w
= = =

  = ⋅ 
  

∈Γ

∑ ∑∑ 



	 (33)

The solution results of the linear programming model [M2] yield the optimal weight vector 
1 2( , , , )nw w w w=  . The comprehensive inclusion-based index ( )iCI A  of the characteristics 
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iA  for alternative Ai can then be obtained. The m alternatives can be ranked according to 
the decreasing order of ( )iCI A  for all iA A∈ . We can then choose the best alternative with 
the maximum value among all values of ( )iCI A .

Alternatively, the decision maker might express inconsistent opinions about preferences 
and criterion importance in the case of contingency. There are no feasible solutions that 
satisfy all of the conditions in G for the present circumstances. Therefore, we formulate a 
multiple-objective, nonlinear programming model by using a goal programming technique 
to cope with problems related to inconsistent information.

For 1 2 3j j j≠ ≠ , the conditions in G are relaxed to G′ by introducing several non-negative 
deviation variables, 

1 2(i) j je− , 
1 2(ii) j je− , 

1 2 3(iii) j j je− , 
1(iv) je− , 

1(iv) je+ , and 
1 2(v) j je− , which are defined 

as follows:

	

{ 1 1 2 2

1 2 1 2 1 2

1 2 3 1 2 3

1 2 0 (i) 1 1 2 1

(ii) 1 2 2 2

(iii) 1 3 2 3 3 3

( , , , )  for all   and  ;

          for all   and  ;

         2 0  for all  , ,  and  ;

     

n j j j j

j j j j j j

j j j j j j

w w w w e w j j

w w e j j

w w w e j j j

−

−

−

′Γ = ∈Γ + ≥ ∈ϒ ∈Λ

− + ≥ δ ∈ϒ ∈Λ

− + + ≥ ∈ϒ ∈Λ ∈Ω



1 1 1 1 1 11

1
1 2 1 2

2

(iv) 1 4(iv)

(v) 1 5 2 5

    ,   for all  ;

         for all   and  .

j j j j j jj

j
j j j j

j

w e w e j

w
e j j

w

− +

−

+ ≥ δ − ≤ δ + ε ∈ϒ

+ ≥ δ ∈ϒ ∈Λ 


	 (34)

In the case of inconsistent preference information, the optimal weight values of the criteria 
can be obtained via the following bi-objective, nonlinear programming model:

	 [M3]  ( )1 2 1 2 1 2 3 1 1 21
1 2 3

1 2

1 2

1 1 1

(i) (ii) (iii) (iv) (v)(iv)
, ,

1 2

1 1 2 1(i)

1 2(ii)

max ( ) ( )

min

( , , , )
 and  ,0
 an0

s.t. 

m m n

i ij j
i i j

j j j j j j j j j jj
j j j N

n

j j

j j

CI A I A w

e e e e e e

w w w
j je
je

= = =

− − − − + −

∈

−

−

  = ⋅ 
  
  + + + + + 
  

′∈Γ
∈ϒ ∈Λ≥

∈ϒ≥

∑ ∑∑

∑

 



1 2 3

1 1

1 2

2 2

1 3 2 3 3 3(iii)

1 4(iv) (iv)

1 5 2 5(v)

d  ,

,  ,  and  ,0

,0,  0

 and  .0

j j j

j j

j j

j

j j je

je e

j je

−

− +

−




 ∈Λ
 ∈ϒ ∈Λ ∈Ω≥
 ∈ϒ≥ ≥
 ∈ϒ ∈Λ≥

	

(35)

The second objective function in [M3] is equivalent to the following objective function: 

{ }1 2 1 2 1 2 3 1 1 21(i) (ii) (iii) (iv) (v)(iv)max ( )j j j j j j j j j jje e e e e e− − − − + −−∑ + + + + + . By utilizing the max-min 
operator, the model in [M3] can be integrated into the following single-objective nonlinear 
programming model:
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	 [M4]  

( )1 2 1 2 1 2 3 1 1 21
1 2 3

1 2

1 2

1 1

(i) (ii) (iii) (iv) (v)(iv)
, ,

1 2

(i) 1 1 2 1

(ii)

max

( ) ,

,

( , , , ) ,
s.t. 0                       and  ,

0             

m n

ij j
i j

j j j j j j j j j jj
j j j N

n

j j

j j

I A w

e e e e e e

w w w
e j j

e

= =

− − − − + −

∈

−

−

λ

⋅ ≥ λ

− + + + + + ≥ λ

′∈Γ

≥ ∈ϒ ∈Λ

≥

∑∑

∑





1 2 3

1 1

1 2

1 2 2 2

(iii) 1 3 2 3 3 3

(iv) 1 4(iv)

(v) 1 5 2 5

          and  ,

0                   ,  ,  and  ,

0,  0       ,

0                       and  .

j j j

j j

j j

j j

e j j j

e e j

e j j

−

− +

−












∈ϒ ∈Λ


≥ ∈ϒ ∈Λ ∈Ω
 ≥ ≥ ∈ϒ
 ≥ ∈ϒ ∈Λ

	 (36)

Solving the integrated nonlinear programming model [M4] yields the optimal weight 

vector 1 2( , , , )nw w w w=   and the optimal deviation values 
1 2(i) j je − , 

1 2(ii) j je − , 
1 2 3(iii) j j je − , 

1(iv) je − , 

1(iv) je + , and 
1 2(v) j je −  ( 1 2 3,  ,  j j j N∈ ). Next, the corresponding comprehensive inclusion-based 

index ( )iCI A  of the characteristics iA  for the alternative Ai can also be obtained. The final 

step is to choose the maximum among all values of ( )iCI A  and obtain the optimal ranking 

of the alternatives according to the decreasing order of ( )iCI A  for all iA A∈ .

3.2. The proposed algorithm

Based on the concept of inclusion comparison possibilities, the proposed interval-valued 
intuitionistic fuzzy MCDA method with comprehensive inclusion-based indexing under 
incomplete preference information can be summarized in the following steps:
Step 1: Formulate a multiple criteria decision-making problem. Specify the alternative set 

{ }1 2, , , mA A A A=   and the criterion set { }1 2, , , nX x x x=  , which is divided into 
Xb and Xc.

Step 2: Determine the evaluation ijA  for every iA A∈  and jx X∈  to establish the inter-
val-valued intuitionistic fuzzy decision matrix D .

Step 3: Collect preference information from the decision maker as criterion weights, in 
terms of the weak order, strict order, difference order, interval bound, or ratio bound. 
Construct the set G of the known information.

Step 4: Identify the interval-valued intuitionistic fuzzy positive-ideal and negative-ideal 
solutions *A  and A−

 , respectively, and the corresponding evaluations * jA  with 
respect to each xj.

Step 5: Compute the inclusion comparison possibilities *( )j ijp A A⊇  , ( )ij jp A A−⊇   (for 
every iA A∈  and j bx X∈ ), *( )ij jp A A⊇  , and ( )j ijp A A− ⊇   (for every iA A∈  and 

j cx X∈ ).
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Step 6: Calculate the inclusion-based index ( )ijI A  of ijA . Then, given the weight vector 
1 2( , , , )nw w w , determine the comprehensive inclusion-based index ( )iCI A  for 

the characteristics iA .
Step 7: Construct the linear programming model [M2] (with consistent weight information) 

or the integrated nonlinear programming model [M4] (with inconsistent weight 
information).

Step 8: Solve [M2] (or [M4]) to acquire the optimal weight vector w  (or w ) and the com-

prehensive inclusion-based index ( )iCI A  (or ( )iCI A ) of iA . Rank the m alternatives 

in accordance with the ( )iCI A  (or ( )iCI A ) values. The alternative with the largest 

( )iCI A  (or ( )iCI A ) value is the best choice.

4. Case illustration and a comparative study

In this section, a realistic example involving an MCDA problem, i.e., selecting a suitable bridge 
construction method, is used as an illustration of applying the proposed interval-valued in-
tuitionistic fuzzy MCDA method using inclusion comparison possibilities under incomplete 
preference information.

4.1. Problem description

Some of the most famous scenic spots in Taiwan are the Hualian and Taidong areas 
(hereafter referred to as Huadong). The Su-Hua Highway is a vital route from the Taipei 
metropolitan area to Huadong. Because of the winding nature of the Su-Hua Highway, 
accidents frequently occur. Furthermore, poor weather conditions and strong, windy 
storms (such as typhoons) frequently cause serious disasters that may result in collapsed 
roads or restricted access. To address these conditions, the government formulated the 
Su-Hua Highway Initiative; unfortunately, the plan did not pass a 2008 environmental 
assessment and had to be suspended. In response, the government launched a new in-
itiative, the Su-Hua Highway Alternative Route Plan, to present a safe and high-speed 
alternative to the most dangerous segment of the Su-Hua Highway. This plan increases 
the convenience of travel from Taipei to Huadong and promotes economic development 
in the Huadong area. However, experts and scholars are concerned that the plan could 
destroy the integrity of the original ecology and environment.

This study explores the question of how to select the most suitable bridge construction 
method for the Su-Hua Highway Alternative Route Plan. This study considers the four most 
commonly used bridge construction methods:

1.	 Advanced shoring method (A1) − to minimize environmental pollution and other effects, 
this method maintains the original ecological and environmental conditions. Addition-
ally, the suitability of this method for the proposed site is very high. This method will 
not be adversely affected by the topographical conditions. However, the damage costs 
associated with this method are relatively high, and the durability of the bridge is low.
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2.	 Incremental launching method (A2) − this method lowers construction costs through 
the use of reusable materials. Moreover, this method has a low degree of disruption 
to daily traffic patterns. However, this method has many negative effects on the sur-
rounding scenery.

3.	 Balanced cantilever method (A3) − under this method, quality control is very effective; 
therefore, the lifespan of the bridge is long, and the frequency of necessary maintenance 
and repair is low. However, the initial costs incurred under this method are high, and 
weather conditions could delay construction and affect the schedule.

4.	 Precast segmental method (A4) − this method also has little effect on existing traffic 
patterns during the construction period and has little effect on the landscape. However, 
this method requires increased attention to the climate patterns and the location of 
the project because the method has many limitations regarding the construction site 
and geography.

Several criteria are considered for evaluating bridge construction methods and for serv-
ing as bases with which the proper construction method can be selected. These criteria are 
as follows:

1.	 Durability (x1) − the number of years of use, the long-term use outlook, and the avoid-
ance of frequent maintenance.

2.	 Damage cost (x2) − the cost of damage or maintenance of the bridge.
3.	 Construction cost (x3) − the expenses incurred from the design phase to the comple-

tion of construction.
4.	 Traffic conflict (x4) − the degree to which construction negatively affects normal traffic 

patterns during the period of construction.
5.	 Site condition (x5) − the condition of the location, including the configuration of the 

topography, the suitability of the construction method for the site, and whether the 
location imposes restrictions on a chosen construction method.

6.	 Weather condition (x6) − a measure of whether climate accelerates bridge damage or 
the possibility that weather conditions could cause construction delays.

7.	 Landscape (x7) − whether the construction method has harmful effects on the scenic 
nature of the neighboring or surrounding areas and whether the appearance of the 
bridge negatively affects the surrounding landscape.

8.	 Environmental effect (x8) − the degree of environmental damage or negative effects 
on the surrounding areas during construction and use.

4.2. Illustration of the algorithm

This application explores the problem of how to select the most suitable bridge construction 
method for the Su-Hua Highway Alternative Route Plan at the Hualian and Taidong areas 
in Taiwan. The proposed interval-valued intuitionistic fuzzy MCDA method was applied to 
solve this problem, and the computational procedure is summarized as follows:
Step 1: The authority considers the four most commonly used bridge construction methods: 

the advanced shoring method (A1), incremental launching method (A2), balanced 
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cantilever method (A3), and precast segmental method (A4). The set of candidate 
methods is denoted by 1 2 3 4{ , , , }A A A A A= . Eight criteria for evaluating the bridge 
construction methods are selected, including durability (x1), damage cost (x2), con-
struction cost (x3), traffic conflict (x4), site condition (x5), weather condition (x6), 
landscape (x7), and environmental effect (x8). The set of evaluative criteria is denoted 
by 1 2 8{ , , , }X x x x=  , with 1 5{ , }bX x x=  and 2 3 4 6 7 8{ , , , , , }cX x x x x x x= .

Step 2: The four bridge construction methods were evaluated based on the eight criteria. 
The evaluation ijA  of alternative iA A∈  (i = 1, 2, 3, 4) on jx X∈  (j = 1, 2, ..., 8) 
are presented in Table 1. Then, we construct the interval-valued intuitionistic fuzzy 
decision matrix D .

Table 1. The evaluation ijA  in the decision matrix D

11A ([0.28, 0.35], [0.33, 0.46]) 31A ([0.72, 0.77], [0.17, 0.20])

12A ([0.43, 0.58], [0.16, 0.17]) 32A ([0.03, 0.07], [0.66, 0.76])

13A ([0.08, 0.16], [0.63, 0.75]) 33A ([0.05, 0.18], [0.36, 0.63])

14A ([0.07, 0.49], [0.38, 0.41]) 34A ([0.35, 0.45], [0.39, 0.44])

15A ([0.64, 0.67], [0.15, 0.33]) 35A ([0.64, 0.67], [0.15, 0.33])

16A ([0.07, 0.14], [0.64, 0.74]) 36A ([0.14, 0.36], [0.22, 0.40])

17A ([0.14, 0.21], [0.34, 0.37]) 37A ([0.18, 0.19], [0.68, 0.74])

18A ([0.04, 0.09], [0.88, 0.90]) 38A ([0.36, 0.40], [0.44, 0.58])

21A ([0.68, 0.71], [0.06, 0.26]) 41A ([0.37, 0.52], [0.33, 0.41])

22A ([0.04, 0.12], [0.61, 0.86]) 42A ([0.26, 0.36], [0.46, 0.64])

23A ([0.09, 0.26], [0.33, 0.46]) 43A ([0.36, 0.40], [0.52, 0.52])

24A ([0.12, 0.23], [0.64, 0.67]) 44A ([0.17, 0.40], [0.29, 0.48])

25A ([0.37, 0.39], [0.26, 0.29]) 45A ([0.15, 0.31], [0.21, 0.62])

26A ([0.18, 0.19], [0.74, 0.78]) 46A ([0.26, 0.85], [0.13, 0.14])

27A ([0.49, 0.66], [0.18, 0.26]) 47A ([0.04, 0.15], [0.83, 0.84])

28A ([0.18, 0.41], [0.17, 0.28]) 48A ([0.13, 0.21], [0.75, 0.77])

Step 3: The authority was provided with the preference for all criteria, and the known infor-
mation about criterion weights is indicated as follows:
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	 { }1 1 2 8 0 5 6( , , , )w w w w wΓ = ∈Γ ≥ ,

	 { }2 1 2 8 0 8 2( , , , ) 0.12 0.07w w w w wΓ = ∈Γ ≥ − ≥ ,

	 { }3 1 2 8 0 7 2 2 4( , , , )w w w w w w wΓ = ∈Γ − ≥ − ,

	 { }4 1 2 8 0 1 5( , , , ) 0.20 0.15,  0.16 0.11w w w w wΓ = ∈Γ ≥ ≥ ≥ ≥ ,

	 { }5 1 2 8 0 3 5( , , , ) 0.6w w w w wΓ = ∈Γ ≥ ⋅ ,

	 where 8
0 1 2 8 1{( , , , ) 0 ( 1,2, ,8),  1}j jjw w w w j w=Γ = ≥ = ∑ =  . It follows that the set 

G of the known information about criterion weights is as follows:

		
{

}
1 2 8 0 5 6 8 2 7 2 2 4 1

5 3 5

( , , , ) ,  0.12 0.07,  ,  0.20

       0.15,  0.16 0.11,  0.6 .

w w w w w w w w w w w w

w w w

Γ = ∈Γ ≥ ≥ − ≥ − ≥ − ≥ ≥

≥ ≥ ≥ ⋅



Step 4: The interval-valued intuitionistic fuzzy positive-ideal solution *A  was identified 
using (16) and (17):

	

{ }
{

* 1 *1 *1 2 *2 *2 8 *8 *8

1 2

3 4

5

,( , ) , ,( , ) , , ,( , )

        ,([0.72,0.77],[0.06,0.20]) , ,([0.03,0.07],[0.66,0.86]) ,

         ,([0.05,0.16],[0.63,0.75]) , ,([0.07,0.23],[0.64,0.67]) ,

         ,([0.64,0.6

A x x x

x x

x x

x

= µ ν µ ν µ ν =



}
6

7 8

7],[0.15,0.29]) , ,([0.07,0.14],[0.74,0.78]) ,

         ,([0.04,0.15],[0.83,0.84]) , ,([0.04,0.09],[0.88,0.90]) .

x

x x

	 (37)

	 Applying (20) and (21), the interval-valued intuitionistic fuzzy negative-ideal solution 
A−
  is given by:

	

{ }
{

1 1 1 2 2 2 8 8 8

1 2

3 4

5

,( , ) , ,( , ) , , ,( , )

    ,([0.28,0.35],[0.33,0.46]) , ,([0.43,0.58],[0.16,0.17]) ,

         ,([0.36,0.40],[0.33,0.46]) , ,([0.35,0.49],[0.29,0.41]) ,

         ,([0.15,0.31],[

A x x x

x x

x x

x

− − − − − − −= µ ν µ ν µ ν =



}
6

7 8

0.26,0.62]) , ,([0.26,0.85],[0.13,0.14]) ,

         ,([0.49,0.66],[0.18,0.26]) , ,([0.36,0.41],[0.17,0.28]) .

x

x x

	 (38)

Step 5: We calculated the required inclusion comparison possibilities. Consider *5 25( )p A A⊇   
for example. Applying (11) and (12), we have:

	

( )
( ) ( )

( )
( ) ( )

25 *5
*5 25

*5 25 25*5

1
( ) max 1 max ,0 ,0

1 1

1 0.26 0.64
                      max 1 max ,0 ,0 0.7619,

1 0.64 0.29 1 0.39 0.26

p A A
− −

−
− + + −

  − ν −µ   ⊇ = − =   
−µ −ν + −µ −ν     

  − −   − =   
− − + − −    

 
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( )
( ) ( )

( )
( ) ( )

25 *5
*5 25

*5 25 25*5

1
( ) max 1 max ,0 ,0

1 1

1 0.29 0.67
                     max 1 max ,0 ,0 0.9231.

1 0.67 0.15 1 0.37 0.29

p A A
+ +

+
+ − − +

  − ν −µ   ⊇ = − =   
−µ −ν + −µ −ν     

  − −   − =   
− − + − −    

 

The inclusion comparison probability *5 25( )p A A⊇   using (13) is computed as follows: 

( )*5 25 *5 25 *5 25
1( ) ( ) ( ) 0.8425
2

p A A p A A p A A− +⊇ = ⊇ + ⊇ =      . For every iA A∈ , we calculated 

*( )j ijp A A⊇   and ( )ij jp A A−⊇   for the benefit criteria and *( )ij jp A A⊇   and ( )j ijp A A− ⊇   
for the cost criteria. These computation results are indicated in Table 2.

Table 2. The results of the inclusion comparison possibilities

A1 A2 A3 A4 A1 A2 A3 A4

*1 1( )ip A A⊇  1.0000 0.6452 0.5471 1.0000 1 1( )ip A A−⊇  0.5000 1.0000 1.0000 0.6978

2 *2( )ip A A⊇  0.8302 1.0000 1.0000 1.0000 2 2( )ip A A− ⊇  0.9125 0.2170 0.2272 0.6218

3 *3( )ip A A⊇  1.0000 0.9677 0.9925 1.0000 3 3( )ip A A− ⊇  0.0417 0.3135 0.2123 0.2476

4 *4( )ip A A⊇  1.0000 1.0000 1.0000 0.9205 4 4( )ip A A− ⊇  0.5898 0.1000 0.5877 0.4894

*5 5( )ip A A⊇  0.5800 0.8425 0.5800 0.8636 5 5( )ip A A−⊇  0.8913 0.7597 0.8913 0.5037

6 *6( )ip A A⊇  1.0000 1.0000 0.9630 0.4824 6 6( )ip A A− ⊇  0.5551 0.5625 0.7170 0.8000

7 *7( )ip A A⊇  1.0000 1.0000 1.0000 1.0000 7 7( )ip A A− ⊇  0.6434 0.9800 0.2414 0.0000

8 *8( )ip A A⊇  1.0000 1.0000 1.0000 1.0000 8 8( )ip A A− ⊇  0.0000 0.6373 0.5029 0.0870

Step 6: We calculated the inclusion-based index ( )ijI A  for every iA A∈  and jx X∈ ; the 
computation results are listed in Table 3. Consider 31( )I A  and 36( )I A  for example. 
Applying (23), we have:

	

31 1
31

*1 31 31 1

( ) 1.0000( ) 0.6464
0.5471 1.0000( ) ( )

p A A
I A

p A A p A A
−

−

⊇
= = =

+⊇ + ⊇

 



   

,

	

6 36
36

36 *6 6 36

( ) 0.7170( ) 0.4268
0.9630 0.7170( ) ( )

p A A
I A

p A A p A A
−

−

⊇
= = =

+⊇ + ⊇

 



   

.
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Table 3. The results of the inclusion-based indices

A1 A2 A3 A4 A1 A2 A3 A4

1( )iI A 0.3333 0.6078 0.6464 0.4110 5( )iI A 0.6058 0.4742 0.6058 0.3684

2( )iI A 0.5236 0.1783 0.1851 0.3834 6( )iI A 0.3570 0.3600 0.4268 0.6238

3( )iI A 0.0400 0.2447 0.1762 0.1985 7( )iI A 0.3915 0.4949 0.1945 0.0000

4( )iI A 0.3710 0.0909 0.3702 0.3471 8( )iI A 0.0000 0.3892 0.3346 0.0800

	 Applying (25), the comprehensive inclusion-based indices for all iA  are as follows:

	

1 1 2 3 4 5 6

7 8

( ) 0.3333 0.5236 0.0400 0.3710 0.6058 0.3570
0.3915 0.0000 ,

CI A w w w w w w
w w

= + + + + + +
+



	

2 1 2 3 4 5 6

7 8

( ) 0.6078 0.1783 0.2447 0.0909 0.4742 0.3600
0.4949 0.3892 ,

CI A w w w w w w
w w

= + + + + + +
+



	

3 1 2 3 4 5 6

7 8

( ) 0.6464 0.1851 0.1762 0.3702 0.6058 0.4268
0.1945 0.3346 ,

CI A w w w w w w
w w

= + + + + + +
+



	

4 1 2 3 4 5 6

7 8

( ) 0.4110 0.3834 0.1985 0.3471 0.3684 0.6238
0.0000 0.0800 .

CI A w w w w w w
w w

= + + + + + +
+



Step 7: Because there is no inconsistent weight information in the set G, we applied [M2] to 
construct the following linear programming model:

{
}

1 2 3 4 1 2 3

4 5 6 7 8

5 6 8 2 7 2 2 4 1 5

max ( ) ( ) ( ) ( ) 1.9985 1.2705 0.6594

        1.1792 2.0541 1.7676 1.0809 0.8039
subject to
        ,  0.12 0.07,  ,  0.20 0.15,  0.16
       0.

CI A CI A CI A CI A w w w

w w w w w

w w w w w w w w w w

+ + + = + + +

+ + + +

≥ ≥ − ≥ − ≥ − ≥ ≥ ≥ ≥

   

3 5 1 2 3 4 5 6 7 811,  0.6 ,  1,  0  for all .jw w w w w w w w w w w j≥ ⋅ + + + + + + + = ≥
	

(39)

Step 8: Solving the above linear programming model, the optimal objective value is 1.5010 and 
the optimal weight vector w = (0.2, 0, 0.096, 0.314, 0.16, 0.16, 0, 0.07). The obtained 
results of the comprehensive inclusion-based indices are given by:  = 0.3410, 2( )CI A = 
0.3343, 3( )CI A = 0.4511, and 4( )CI A = 0.3746. The ranking order of the candidate 
bridge construction methods is A3A4A1A2. Therefore, the best choice is the 
balanced cantilever method (A3).
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4.3. Remarks on the case of inconsistent weight information

Consider the same bridge construction selection problem with inconsistent weight informa-
tion. Assume that we add the condition 6 50.05 0.01w w≥ − ≥  to the set 2Γ  in Step 3. The 
sets 2Γ  and G are updated as follows:

	             { }(new)
1 2 8 0 8 2 6 52 ( , , , ) 0.12 0.07,  0.05 0.01w w w w w w wΓ = ∈Γ ≥ − ≥ ≥ − ≥ ,

  	

     	

{
}

(new)
1 2 8 0 5 6 8 2 6 5

7 2 2 4 1 5 3 5

( , , , ) ,  0.12 0.07,  0.05 0.01,  

              ,  0.20 0.15,  0.16 0.11,  0.6 .

w w w w w w w w w

w w w w w w w w

Γ = ∈Γ ≥ ≥ − ≥ ≥ − ≥

− ≥ − ≥ ≥ ≥ ≥ ≥ ⋅



The conditions of 5 6w w≥  in 1Γ  and 6 50.05 0.01w w≥ − ≥  in (new)
2Γ  are conflicting, and 

thus, the weight information in (new)Γ  is partially inconsistent. Because inconsistent weight 
information exists in (new)Γ , we applied [M4] in Step 7 to construct the following integrated 
nonlinear programming model:

	

1 2 3 4 5 6 7

8

(i)56 (ii)82 (ii)65 (iii)724 (iv)1 (iv)5(ii)82 (ii)65 (iv)1 (iv)5

max  
subject to
        1.9985 1.2705 0.6594 1.1792 2.0541 1.7676 1.0809
        0.8039 ,

       

w w w w w w w
w

e e e e e e e e e e− − − + + − − − + +

λ

+ + + + + + +
≥ λ

− + + + + + + + + + +( )(v)35

5 (i)56 6 8 2 (ii)82 6 5 (ii)65 8 2 (ii)82

6 5 7 2 4 (iii)724 1 (iv)1 5 (iv)5(ii)65

1 (iv)1

,

        ,  0.07,  0.01,  0.12,

        0.05,  2 0,  0.15,  0.11,

        

e

w e w w w e w w e w w e

w w e w w w e w e w e

w e

−

− − − +

+ − − −

+

≥ λ

+ ≥ − + ≥ − + ≥ − − ≤

− − ≤ − + + ≥ + ≥ + ≥

− ≤ 3
5 (v)35(iv)5

5

1 2 3 4 5 6 7 8

(i)56 (ii)82 (ii)65 (iii)724 (iv)1 (iv)5 (v)(ii)82 (ii)65 (iv)1 (iv)5

0.20,  0.16,  0.6,

        1,  0  for all ,

        ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  
j

w
w e e

w
w w w w w w w w w j

e e e e e e e e e e e

+ −

− − − + + − − − + +

− ≤ + ≥

+ + + + + + + = ≥

35 0,− ≥

where (i)56e− , (ii)82e− , (ii)65e− , (ii)82e+ , (ii)65e+ , (iii)724e− , (iv)1e− , (iv)5e− , (iv)1e+ , (iv)5e+ , and (v)35e−  
are deviation variables.

The above nonlinear programming model was solved by Step 8 to obtain the optimal ob-
jective value, 0.01λ = − , the optimal weight vector, w = (0.15, 0, 0.56, 0, 0.11, 0.11, 0, 0.07), 
the optimal deviation values, (ii)65 0.01e − = , and (i)56e − = (ii)82e − = (ii)82e + = (ii)65e + = (iii)724e − = (iv)1e − = 

(iv)5e − = (iv)1e + = (iv)5e + = (v)35e − = 0. The obtained results of the comprehensive inclusion-based 

indices are given by: 1( )CI A = 0.1783, 2( )CI A = 0.3472, 3( )CI A = 0.3326, and 4( )CI A = 
0.2876. The ranking order of the candidate bridge construction methods under inconsist-
ent weight information is A2A3A4A1. Therefore, the best choice is the incremental 
launching method (A2). It is telling that this result is significantly different from the ranking 
order yielded under consistent weight information. This is because the obtained results un-
der consistent and inconsistent preference structures have distinct weight distributions in 
relation to the eight criteria.
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4.4. Comparative analysis and discussions

In the following, we conducted a comparative analysis to examine the results of the present in-
clusion-based method with those of the other approaches. First, because our proposed method 
originates from the main structure of TOPSIS, a well-known and widely used compromising 
method in MCDA, we chose it to be the foremost comparative method. Second, the proposed 
method was compared to Li’s (2011c) closeness coefficient-based nonlinear programming method. 
Li (2011c) propounded a seminal study that applied IVIFSs to decision analysis using auxiliary 
nonlinear programming models and closeness IFSs. This research plays a significant role in the 
enrichment of decision modeling in interval-valued intuitionistic fuzzy settings. Therefore, we 
consider the obtained results by using Li’s (2011c) method as a comparative benchmark. To 
compare the solution results on a common basis, we based the analysis on the same input data.

The first comparative method is the fuzzy TOPSIS approach. The basic concept of the TOPSIS 
method is that the chosen alternative should have the shortest distance from the positive ideal 
solution and the farthest distance from the negative ideal solution. For measuring distances be-
tween IVIFSs, we employed the generalization of Euclidean distances. The weighted Euclidean 
distances, *( , )id A A   and ( , )id A A−

  , of each alternative from the interval-valued intuitionistic 
fuzzy positive-ideal and negative-ideal solutions, respectively, are derived from:

	 2 2 2 2
* * ** *

1

1( , ) ( ) ( ) ( ) ( )
4

n

i j ij j ij ij j ijj j
j

d A A w − − + + − − + +

=

 = µ −µ + µ −µ + ν −ν + ν −ν ∑  ,	 (40)

	 2 2 2 2

1

1( , ) ( ) ( ) ( ) ( )
4

n

i j ij j ij j ij j ij j
j

d A A w − − + + − − + +
− − − − −

=

 = µ −µ + µ −µ + ν −ν + ν −ν ∑  .	 (41)

Consider 2 *( , )d A A   for example:

( )
( )

2 2 2 2
2 * 1

2 2 2 2
2

2 2

1( , ) (0.68 0.72) (0.71 0.77) (0.06 0.06) (0.26 0.20)
4

                   (0.04 0.03) (0.12 0.07) (0.61 0.66) (0.86 0.86)

                   (0.09 0.05) (0.26 0.16) (0.33 0.63

d A A w

w

 = − + − + − + − + 
− + − + − + − +

− + − + −

 

( )
( )
( )

2 2
3

2 2 2 2
4

2 2 2 2
5

2

) (0.46 0.75)

                   (0.12 0.07) (0.23 0.23) (0.64 0.64) (0.67 0.67)

                   (0.37 0.64) (0.39 0.67) (0.26 0.15) (0.29 0.29)

                   (0.18 0.07) (0.1

w

w

w

+ − +

− + − + − + − +

− + − + − + − +

− +( )
( )
( ) )

2 2 2
6

2 2 2 2
7

0.5
2 2 2 2

8

9 0.14) (0.74 0.74) (0.78 0.78)

                   (0.49 0.04) (0.66 0.15) (0.18 0.83) (0.26 0.84)

                   (0.18 0.04) (0.41 0.09) (0.17 0.88) (0.28 0.90)

            

w

w

w

− + − + − +

− + − + − + − +

− + − + − + − =

(

))

1 2 3 4 5 6

0.5
7 8

1       0.0088 0.0051 0.1857 0.0025 0.1634 0.0146
4

                    1.2215 1.0105 .

w w w w w w

w w

 + + + + + +


+
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Based on the weighted Euclidean distances, the closeness coefficient ( )iCC A  of the char-
acteristics iA  for the alternative Ai is defined with the following general formula:

	
*

( , )
( )

( , ) ( , )
i

i
i i

d A A
CC A

d A A d A A
−

−
=

+

 



   

,	 (42)

where 0 ( ) 1iCC A≤ ≤ .
Applying the weighted Euclidean distances, we constructed a nonlinear programming 

model under the incomplete weight information condition as follows:

	 [M5]  *1 1

1 2

( , )
max ( )

( , ) ( , )
s.t.    ( , , , ) .

m m
i

i
i ii i

n

d A A
CC A

d A A d A A
w w w

−

−= =

  = 
+  

∈Γ

∑ ∑
 



   



	 (43)

The solution results in [M5] yield the optimal weight vector 1 2( , , , )nw w w w=   and the 
corresponding closeness coefficients. Subsequently, the preference order of alternatives would 
be ranked according to the descending order of ( )iCC A . Moreover, the alternative with the 
highest ( )iCC A  value will be the best choice.

In the IVIFS context, we applied the fuzzy TOPSIS method to solve the same bridge con-
struction method selection problem under incomplete preference information. According 
to (37), (38), and the evaluation ijA  in the decision matrix D  in Table 2, we applied [M5] 
to establish the following nonlinear programming model:

))

(

0.5
4 5 6 7 8

1 2 3 4 5 6 7

        0.3106 0.1637 1.2237 0 0.0324

1        0.4632 1.0182 0.1743 0.0125 0.4659 0.3302 0.7974
4

w w w w w

w w w w w w w

+ + + + +
 + + + + + + +

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)) (

)) (

))

0.5
8 1 2 3 4 5

0.5
6 7 8 1 2 3

0.5
4 5 6 7 8

1        0.1630 0.0121 0.0100 0.0877 0.2422 0.0016
4

1        0.4681 0.0537 0.4945 0.4632 1.0182 0.1743
4

        0.0125 0.4659 0.3302 0.7974 0.1630

w w w w w w

w w w w w w

w w w w w

 + + + + +


+ + + + + +


+ + + + 

(

)) (

))

1 2 3 4 5 6 7

0.5
8 1 2 3 4 5

0.5
6 7 8 1 2

1        0.0395 0.3882 0.0397 0.0454 0.0025 0 1.2215
4

1        0.6694 0.3020 0.2254 0.2187 0.1975 0.4822
4

1        1.3219 0 0.0563 0.0395 0.3882 0.0
4

w w w w w w w

w w w w w w

w w w w w

+

 + + + + + + +


 + + + + +


+ + + + +( 3397w +


))0.5
4 5 6 7 8

5 6 8 2 7 2 2 4 1 5

3 5 1 2 3 4 5 6 7 8

        0.0454 0.0025 0 1.2215 0.6694

subject to
        ,  0.12 0.07,  ,  0.20 0.15,  0.16
       0.11,  0.6 ,  1,  0  for all .j

w w w w w

w w w w w w w w w w
w w w w w w w w w w w j

+ + + + 

≥ ≥ − ≥ − ≥ − ≥ ≥ ≥
≥ ≥ ⋅ + + + + + + + = ≥

	

(44)

The optimal objective value is 2.2254, and the optimal weight vector w = (0.15, 0.1140908, 
0.066, 0, 0.11, 0, 0.3758184, 0.1840908). In addition, the corresponding closeness coefficients 

1( )CC A = 0.5073411, 2( )CC A = 0.3573352, 3( )CC A = 0.6868759, and 4( )CC A = 0.6738473. 
Thus, the optimal order of the four bridge construction methods is A3A4A1A2.

The models in (39) and (44) yielded the same ranking results of the alternatives. However, 
when the fuzzy TOPSIS approach was employed within the IVIFS environment, the nonlinear 
programming model in (44) is markedly complex and is very difficult to solve. The model in 
(44) was solved using the Global Solver from LINGO 12.0 run on an x64-based PC with an 
Intel Core i5 CPU and 8 G RAM. LINGO completed the solution in 13 hours and 14 minutes; 
in addition, the number of iterations totaled 112,435,420. In contrast, we need to solve only 
the simple linear programming model in (39) (with less than 1 second running time) when we 
applied the proposed interval-valued intuitionistic fuzzy MCDA method based on inclusion 
comparison possibilities. In addition, the resulting ranking orders of the alternatives do not 
change. When we used the proposed method instead of the fuzzy TOPSIS method for the 
bridge construction selection problem or other decision-making problems, the complicated 
nonlinear programming model in [M5] can be replaced with the linear programming model 
in [M2]. The optimization problem can be easily solved using the Simplex method, and the 
degree of computational complexity can be significantly reduced.

The second comparative method is the closeness coefficient-based nonlinear program-
ming method (Li 2011c). Li (2011c) proposed a new nonlinear programming method for 
solving MCDA problems based on the concept of closeness coefficients. His developed 
closeness coefficient is defined as the ratio between the square of the weighted Euclidean 
distance between an alternative and the negative ideal solution and the sum of the squares 
of the weighted Euclidean distances between the alternative and the positive and negative 
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ideal solutions. Then, Li (2011c) constructed auxiliary nonlinear programming models to 
estimate the closeness IFSs, which are used to determine the optimal degrees of membership 
for the alternative rankings.

In the following, we applied Li’s (2011c) method to solve the bridge construction selec-
tion problem. Note that in Li (2011c), all benefit criteria evaluation values for the positive- 
and negative-ideal solutions were expressed in the IVIFS vectors as ( )( )1[1,1],[0,0]

n×
 and 

( )( )1[0,0],[1,1]
n×

, respectively. For the sake of a consistent comparative basis, we employed 
(15) and (19) to identify the positive- and negative-ideal solutions, respectively. According 
to Li’s (2011c) method, we constructed auxiliary nonlinear programming models for the four 
bridge construction methods. Let Ci denote the closeness IFS of alternative iA A∈ , where 
its degree of membership is bounded in the interval [ , ]l u

i iC C . Take the alternative A2 as an 
example. Two nonlinear programming models were established as follows:

	

{ 2 2 2 2 2 2
2 1 2 3 4 5 6

2 2 2 2 2 2
7 8 1 2 3 4

2 2 2 2
5 6 7 8 1

min (0.40 ) ( 0.39 ) ( 0.27 ) ( 0.23 ) (0.22 ) ( 0.08 )

        (0.00 ) ( 0.18 ) ( 0.20 ) (0.69 ) (0.00 ) (0.26 )

        ( 0.33 ) (0.64 ) (0.00 ) (0.00 ) (0.40

lC w w w w w w

w w w w w w

w w w w w

= + − + − + − + + − +
+ − + − + + + +

− + + + 
2 2

2
2 2 2 2 2 2

3 4 5 6 7 8
2 2 2 2 2 2

1 2 3 4 5 6

) ( 0.39 )

        ( 0.27 ) ( 0.23 ) (0.22 ) ( 0.08 ) (0.00 ) ( 0.18 )
        ( 0.20 ) (0.69 ) (0.00 ) (0.26 ) ( 0.33 ) (0.64 )

w

w w w w w w
w w w w w w

 + − +
− + − + + − + + − +

− + + + + − + + 	  

	

2 2 2 2 2 2
7 8 1 2 3 4

2 2 2 2 2 2
5 6 7 8 1 2

2 2 2 2 2
3 4 5 6 7 8

 (0.00 ) (0.00 ) ( 0.04 ) (0.01 ) (0.04 ) (0.05 )
        ( 0.27 ) (0.11 ) (0.45 ) (0.14 ) (0.06 ) (0.00 )

        ( 0.29 ) (0.00 ) (0.00 ) (0.00 ) ( 0.58 ) ( 0.62 )

w w w w w w
w w w w w w

w w w w w w

+ + − + + + +

− + + + + + +

− + + + + − + − }2

5 6 8 2 7 2 2 4 1 5

3 5 1 2 3 4 5 6 7 8

subject to
        ,  0.12 0.07,  ,  0.20 0.15,  0.16 0.11,
        0.6 ,  1,  0  for all ,j

w w w w w w w w w w
w w w w w w w w w w w j



≥ ≥ − ≥ − ≥ − ≥ ≥ ≥ ≥
≥ ⋅ + + + + + + + = ≥ 	

(45)

	

{ 2 2 2 2 2 2
2 1 2 3 4 5 6

2 2 2 2 2 2
7 8 1 2 3 4

2 2 2 2 2
5 6 7 8 1

max (0.36 ) ( 0.46 ) ( 0.14 ) ( 0.26 ) (0.08 ) ( 0.66 )

        (0.00 ) (0.00 ) ( 0.27 ) (0.45 ) (0.00 ) (0.35 )

        (0.00 ) (0.61 ) (0.00 ) (0.00 ) (0.36 )

uC w w w w w w

w w w w w w

w w w w w

= + − + − + − + + − +
+ + − + + + +

+ + + 
2

2
2 2 2 2 2 2

3 4 5 6 7 8
2 2 2 2 2 2

1 2 3 4 5 6
2 2 2

7 8 1 2

( 0.46 )

        ( 0.14 ) ( 0.26 ) (0.08 ) ( 0.66 ) (0.00 ) (0.00 )
        ( 0.27 ) (0.45 ) (0.00 ) (0.35 ) (0.00 ) (0.61 )
        (0.00 ) (0.00 ) ( 0.06 ) (0.05

w

w w w w w w
w w w w w w

w w w w

 + − +
− + − + + − + + +

− + + + + + +

+ + − +

}

2 2 2
3 4

2 2 2 2 2 2
5 6 7 8 1 2

2 2 2 2 2 2
3 4 5 6 7 8

5 6 8 2

) (0.10 ) (0.00 )
        ( 0.28 ) (0.05 ) (0.51 ) (0.32 ) (0.00 ) ( 0.05 )

        ( 0.30 ) (0.00 ) (0.11 ) (0.00 ) ( 0.65 ) ( 0.71 )

subject to
        ,  0.12

w w
w w w w w w

w w w w w w

w w w w

+ + +

− + + + + + − +

− + + + + − + − 

≥ ≥ − 7 2 2 4 1 5

3 5 1 2 3 4 5 6 7 8

0.07,  ,  0.20 0.15,  0.16 0.11,
        0.6 ,  1,  0  for all .j

w w w w w w
w w w w w w w w w w w j

≥ − ≥ − ≥ ≥ ≥ ≥
≥ ⋅ + + + + + + + = ≥

	
		

(46)
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We obtained the optimal weight vectors (0.15, 0, 0.066, 0, 0.11, 0, 0.604, 0.07) and (0.15, 
0, 0.066, 0.604, 0.11, 0, 0, 0.07) by solving (45) and (46), respectively. The optimal objective 
values of (45) and (46) are 0.03326215 and 0.9417259, respectively. Then, the closeness IFS 
of alternative A2 is C2=[0.03326215, 0.9417259]. In the same way, we acquired the other 
closeness IFSs as follows: C1=[0.1596862, 0.8584206], C3=[0.1849206, 0.9429694], and 
C4=[0.04181132, 0.9800826].

The inclusion comparison possibilities for the pair-wise alternatives in A were obtained 
and expressed in matrix format as follows:

	

0.5 0.5134 0.4623 0.4988
0.4866 0.5 0.4541 0.4873
0.5377 0.5459 0.5 0.5312
0.5012 0.5127 0.4688 0.5

P

 
 
 =  
 
  

.

The optimal membership degrees were computed as follows: 0.2479, 0.2440, 0.2596, and 
0.2486 for A1, A2, A3, and A4, respectively. Accordingly, the ranking order of the four bridge 
construction methods is A3A4A1A2. Therefore, we can conclude that the ranking result 
yielded by the proposed method is the same as the benchmark result from Li’s method. The 
validity of the final result yielded by the proposed method has been examined through the 
comparative analysis. Additionally, it is striking that after minimizing the tedious computa-
tional requirements, the proposed methodology can still generate credible solution results in 
this particular bridge construction selection problem. This comparative analysis demonstrated 
the potential of the proposed method to practical applications.

Conclusions

In the context of an IVIFS framework, this paper proposed an inclusion comparison-based 
method for solving multiple criteria decision-making problems under incomplete preference 
information. More specifically, this paper makes several important contributions to the 
existing literature on MCDA methodology based on IVIFSs. First, we extended the concept 
of inclusion comparison probability to propose lower and upper inclusion comparison 
possibilities defined on IVIFSs. Second, we defined an inclusion comparison possibility 
within the interval-valued intuitionistic fuzzy decision environment and discussed several 
important properties. Third, we propounded an inclusion-based index under considerations 
of displaced positive-ideal and negative-ideal solutions. Fourth, instead of relying on a com-
plicated computational process to handle IVIFS data, we developed a simple and effective 
MCDA method based on the weighted inclusion-based indices. Finally, the proposed inclusion 
comparison approach is a flexible method capable of tackling decision-making problems that 
feature either consistent or inconsistent information regarding criterion importance under an 
incomplete preference structure. Furthermore, we illustrated an executive procedure of the 
proposed method by applying it to the selection problem of bridge construction methods. As 
depicted in the comparison analysis with the fuzzy TOPSIS approach, the proposed inclusion 
comparison-based method does not require complicated computational procedures, but 
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still yields a credible solution. Therefore, we demonstrated the applicability of the proposed 
method to a real-world problem.
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APPENDIX I

In this appendix, we will verify the four properties (P1.1)–(P1.4) of the lower and upper 
inclusion comparison possibilities previously mentioned in Property 1.

Proof of (P1.1)
It is obvious that:

	

( )
( ) ( )

'

''

1
max ,0 0

1 1

j j

j j jj

− −
ρ ρ

− + + −
ρ ρ ρρ

 − ν −µ  ≥ 
−µ −ν + −µ −ν  

.

It follows that:

	

( )
( ) ( )

'

''

1
1 max ,0 1

1 1

j j

j j jj

− −
ρ ρ

− + + −
ρ ρ ρρ

 − ν −µ − ≤ 
−µ −ν + −µ −ν  

.

Furthermore,

	

( )
( ) ( )

'

''

1
0 max 1 max ,0 ,0 1

1 1

j j

j j jj

− −
ρ ρ

− + + −
ρ ρ ρρ

  − ν −µ   ≤ − ≤   
−µ −ν + −µ −ν     

.

Therefore, we know that '0 ( ) 1j jp A A−
ρ ρ≤ ⊇ ≤   is satisfied, i.e., (P1.1) is valid.

Proof of (P1.2)
(P1.2) is proven by analogy to (P1.1).

Proof of (P1.3)
Because j j

− +
ρ ρµ ≤ µ  and ' 'j j

− +
ρ ρν ≤ ν , we obtain:

	 ( ) ( )' '1 1j j jj
− − + +
ρ ρ ρρ− ν −µ ≥ −ν −µ .	 (A1)
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Considering the denominator in (11), we have:

	

( ) ( )
( ) ( )
( ) ( ) ( ) ( )

''

'' ' '

'' ' '

1 1

1 1

1 1 .

j j jj

j j j j jj j j

j j j j jj j j

− + + −
ρ ρ ρρ

+ − + + + − + +
ρ ρ ρ ρ ρρ ρ ρ

+ − + − + + + +
ρ ρ ρ ρ ρρ ρ ρ

−µ −ν + −µ −ν =

µ −µ + −µ −ν + ν −ν + −µ −ν =

 µ −µ + ν −ν + −µ −ν + −µ −ν  

	 (A2)

With respect to the denominator in (12), we obtain:

	

( ) ( )
( ) ( ) ( ) ( )

' '

'' ' '

1 1

1 1 .

j j j j

j j j j jj j j

+ − − +
ρ ρ ρ ρ

+ − + − + + + +
ρ ρ ρ ρ ρρ ρ ρ

−µ −ν + −µ −ν =

 ν − ν + µ −µ + −µ −ν + −µ −ν   	

(A3)

We can observe that ' '[(1 ) (1 )]j j j j
+ + + +
ρ ρ ρ ρ−µ −ν + −µ −ν  is a common term in (A2) 

and (A3). Therefore, the comparison of ''(1 ) (1 )j j jj
− + + −
ρ ρ ρρ−µ −ν + −µ −ν  and (1 j

+
ρ−µ −  

' ') (1 )j j j
− − +
ρ ρ ρν + −µ −ν  can be directly conducted via ''( ) ( )j j jj

+ − + −
ρ ρ ρρµ −µ + ν −ν  and 

''( ) ( )j j jj
+ − + −
ρ ρ ρρν − ν + µ −µ . In the following, we will verify (P1.3) with regard to 

the condit ions of  (a)  ' '' '( ) ( ) ( ) ( )j j j j j jj j
+ − + − + − + −
ρ ρ ρ ρ ρ ρρ ρµ −µ + ν −ν ≤ ν −ν + µ −µ  and (b) 

' '' '( ) ( ) ( ) ( )j j j j j jj j
+ − + − + − + −
ρ ρ ρ ρ ρ ρρ ρµ −µ + ν −ν ≥ ν −ν + µ −µ .
According to (A1) and Condition (a), it follows that:

	

( )
( ) ( )

( )
( ) ( )

' '

' '' '

11

1 1 1 1

jj j j

j j j j j jj j

+ +− −
ρρ ρ ρ

− + + − + − − +
ρ ρ ρ ρ ρ ρρ ρ

− ν −µ−ν −µ
≥

−µ −ν + −µ −ν −µ −ν + −µ −ν
.

Therefore, it is proven that ' '( ) ( )j j j jp A A p A A− +
ρ ρ ρ ρ⊇ ≤ ⊇     in Condition (a).

Regarding the proof in Condition (b), we know that 0 j j j
+ − +
ρ ρ ρ≤ µ −µ ≤ µ , '' '0 jj j

+ − +
ρρ ρ≤ ν −ν ≤ ν , 

0 j j j
+ − +
ρ ρ ρ≤ ν −ν ≤ ν , and '' '0 jj j

+ − +
ρρ ρ≤ µ −µ ≤ µ . Consider the special cases of 0j

−
ρµ = , ' 0j

−
ρν = , 

j j
− +
ρ ρν = ν , and ' 'j j

− +
ρ ρµ = µ , in which (A2) has the maximal value and (A3) has the minimal 

value. Here, the fraction in (11) becomes:

	
( )

( ) ( ) ( ) ( )' '

1 0 0 1 1
21 0 1 0 1 1j jj j

+ + + +
ρ ρρ ρ

− −
= ≥

− −ν + −µ − −ν + −µ
,	 (A4)

because 1 1j
+
ρ− ν ≤  and '1 1j

+
ρ−µ ≤ .

Next, considering the conditions where [0, ]j j j
+ − +
ρ ρ ρµ −µ ∈ µ , '' '[0, ]jj j

+ − +
ρρ ρν − ν ∈ ν , 

[0, ]j j j
+ − +
ρ ρ ρν − ν ∈ ν , and '' '[0, ]jj j

+ − +
ρρ ρµ −µ ∈ µ , we obtain that ' 'j jj j

+ + + +
ρ ρρ ρµ + ν ≥ ν +µ  from 

' '' '( ) ( ) ( ) ( )j j j j j jj j
+ − + − + − + −
ρ ρ ρ ρ ρ ρρ ρµ −µ + ν −ν ≥ ν −ν + µ −µ  in Condition (b). Therefore, this implies 

that ' '1 1j jj j
+ + + +
ρ ρρ ρ−µ −ν ≤ −ν −µ . Following the discussion above, the fraction in (12) becomes:
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1 1 1 .
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ρρ
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ρ ρ ρ ρ
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	 (A5)

Thereby, (A4) is not less than (A5). According to the comparison result in the case of the 
maximal value in (A2) and the minimal value in (A3), it directly follows that:
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It is easily proven that ' '( ) ( )j j j jp A A p A A− +
ρ ρ ρ ρ⊇ ≤ ⊇     in Condition (b). Therefore, we 

prove that (P1.3) is valid.

Proof of (P1.4)
Three cases are taken into consideration in this proof and include the following: (a) '1 j j

− −
ρ ρ− ν ≥ µ  

and '1 j j
+ +
ρ ρ− ν ≥ µ ; (b) '1 j j

− −
ρ ρ− ν ≥ µ  and '1 j j

+ +
ρ ρ− ν ≤ µ ; and (c) '1 j j

− −
ρ ρ− ν ≤ µ  and '1 j j

+ +
ρ ρ− ν ≥ µ . 

With regard to the conditions that '1 j j
− −
ρ ρ− ν ≤ µ  and '1 j j

+ +
ρ ρ− ν ≤ µ , we combine the two ine-

qualities ' 1j j
− −
ρ ρµ + ν ≥  and ' 1j j

+ +
ρ ρν +µ ≥  to obtain '' 2j j jj

− + + −
ρ ρ ρρµ + ν +µ + ν ≥ . However, this 

result is not permitted because of the axioms 1j j
+ +
ρ ρµ + ν ≤  and ' ' 1j j

+ +
ρ ρµ + ν ≤ , as indicated 

in Definition 3. Therefore, discussing the conditions of '1 j j
− −
ρ ρ− ν ≤ µ  and '1 j j

+ +
ρ ρ− ν ≤ µ  is 

actually unnecessary.
In Case (a), because 1 0j j

− +
ρ ρ−µ −ν ≥ , ''1 0jj

+ −
ρρ−µ −ν ≥ , and '(1 ) 0j j

− −
ρ ρ− ν −µ ≥ , we 

know that:

	

( )
( ) ( )

'

''

1
0

1 1

j j

j j jj

− −
ρ ρ

− + + −
ρ ρ ρρ

− ν −µ
≥

−µ −ν + −µ −ν
, and

	

( )
( ) ( )

( )
( ) ( )

' '

' '' '

1 1
max ,0

1 1 1 1

j j j j

j j j j j jj j

− − − −
ρ ρ ρ ρ

− + + − − + + −
ρ ρ ρ ρ ρ ρρ ρ

 − ν −µ −ν −µ  = 
−µ −ν + −µ −ν −µ −ν + −µ −ν  

.

Additionally, because '1 j j
+ +
ρ ρ− ν ≥ µ ,

	

( )
( ) ( ) ( ) ( )

' '

' '' '

1 1
1 0

1 1 1 1

j j j j

j j j j j jj j

− − + +
ρ ρ ρ ρ

− + + − − + + −
ρ ρ ρ ρ ρ ρρ ρ

− ν −µ −ν −µ
− = ≥

−µ −ν + −µ −ν −µ −ν + −µ −ν
.
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Therefore, in Case (a), we obtain:

	
( ) ( )

'
'

''

1
( )

1 1

j j
j j

j j jj

p A A
+ +
ρ ρ−

ρ ρ − + + −
ρ ρ ρρ

− ν −µ
⊇ =

−µ −ν + −µ −ν
  .

In a similar way, we obtain:

	 ( ) ( )
'

'
''

1
( )

1 1
j j

j j
j j jj

p A A
− −
ρ ρ+

ρ ρ + − − +
ρ ρ ρρ

− ν −µ
⊇ =

−µ −ν + −µ −ν
  .

It is clear that ' '( ) ( ) 1j j j jp A A p A A− +
ρ ρ ρ ρ⊇ + ⊇ =     follows from Case (a).

Next, consider the conditions in Case (b). Likewise, according to Case (b), we have:

	

( )
( ) ( ) ( ) ( )

' '

' '' '

1 1
1 max ,0

1 1 1 1

j j j j

j j j j j jj j

− − + +
ρ ρ ρ ρ

− + + − − + + −
ρ ρ ρ ρ ρ ρρ ρ

 − ν −µ −ν −µ − = 
−µ −ν + −µ −ν −µ −ν + −µ −ν  

.

Because '1 j j
+ +
ρ ρ− ν ≤ µ  in Case (b), we obtain '( ) 0j jp A A−

ρ ρ⊇ =  . Additionally, because 

'1 j j
+ +
ρ ρ− ν ≤ µ , we obtain:

	

( )
( ) ( )

'

''

1
0

1 1

j j

j j jj

+ +
ρ ρ

+ − − +
ρ ρ ρρ

− ν −µ
≤

−µ −ν + −µ −ν
, and

	

( )
( ) ( )

'

''

1
max ,0 0

1 1

j j

j j jj

+ +
ρ ρ

+ − − +
ρ ρ ρρ

 − ν −µ  = 
−µ −ν + −µ −ν  

.

Thereby, '( ) 1j jp A A+
ρ ρ⊇ =  . It is easily observed that ' '( ) ( )j j j jp A A p A A− +

ρ ρ ρ ρ⊇ + ⊇   

 
= 1 

in Case (b).
With regard to the condition that '1 j j

− −
ρ ρ− ν ≤ µ  in Case (c), we obtain:

	

( )
( ) ( )

'

''

1
0

1 1

j j

j j jj

− −
ρ ρ

− + + −
ρ ρ ρρ

− ν −µ
≤

−µ −ν + −µ −ν
.

Therefore, '( ) 1j jp A A−
ρ ρ⊇ =  . Moreover, with the condition that '1 j j

+ +
ρ ρ− ν ≥ µ ,

	

( )
( ) ( )

'

''

1
0

1 1

j j

j j jj

+ +
ρ ρ

+ − − +
ρ ρ ρρ

− ν −µ
≥

−µ −ν + −µ −ν
.
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Applying the condition that '1 j j
− −
ρ ρ− ν ≤ µ , we obtain:

	

( )
( ) ( )

( ) ( )

'
'

''

'

''

1
( ) max 1 ,0

1 1

1
                               max ,0 0.

1 1

j j
j j

j j jj

j j

j j jj

p A A
+ +
ρ ρ+

ρ ρ + − − +
ρ ρ ρρ

− −
ρ ρ

+ − − +
ρ ρ ρρ

 − ν −µ ⊇ = − = 
−µ −ν + −µ −ν  

 − ν −µ  = 
−µ −ν + −µ −ν  

 

Accordingly, ' '( ) ( ) 1j j j jp A A p A A− +
ρ ρ ρ ρ⊇ + ⊇ =     in Case (c). Therefore, we prove that 

(P1.4) is valid.  

APPENDIX II

In this appendix, we will verify the four properties (P2.1)–(P2.6) of the inclusion comparison 
possibility previously mentioned in Property 2.

Proof of (P2.1)
According to (P1.1) and (P1.2) in Property 1, we know that '0 ( ) 1j jp A A−

ρ ρ≤ ⊇ ≤   and 

'0 ( ) 1j jp A A+
ρ ρ≤ ⊇ ≤  . It is obvious that the arithmetic mean of '( )j jp A A−

ρ ρ⊇   and 

'( )j jp A A+
ρ ρ⊇   is between 0 and 1, i.e., '0 ( ) 1j jp A Aρ ρ≤ ⊇ ≤  . Thereby, (P2.1) is valid.

Proof of (P2.2)

Consider the lower inclusion comparison possibility '( )j jp A A−
ρ ρ⊇   in the case of 

'1 j j
− −
ρ ρ− ν ≤ µ . Because j j

− +
ρ ρν ≤ ν , ' 'j j

− +
ρ ρµ ≤ µ , and '1 0j j

− −
ρ ρ− ν −µ ≤ , it easily follows that:

	 ''1 1 0j j jj
+ + − −
ρ ρ ρρ− ν −µ ≤ −ν −µ ≤ .

It directly implies that:

	
( ) ( ) ( ) ( )' ' '' '1 1 1 1 1j j j j j j j jj j

− + + − − − + + − −
ρ ρ ρ ρ ρ ρ ρ ρρ ρ−µ −ν + −µ −ν = −ν −µ + −ν −µ ≤ −ν −µ .

Then, we have:

	
( ) ( )

'

''

1
1

1 1
j j

j j jj

− −
ρ ρ

− + + −
ρ ρ ρρ

− ν −µ
≥

−µ −ν + −µ −ν
.

Therefore, '( ) 0j jp A A−
ρ ρ⊇ =  .

Next, consider the upper inclusion comparison possibility '( )j jp A A+
ρ ρ⊇   if '1 j j

− −
ρ ρ− ν ≤ µ . 

Because '1 0j j
− −
ρ ρ− ν −µ ≤ , we obtain:

	
( ) ( ) ( ) ( )' '' ' '1 1 1 1 1j j j j j j jj j j

+ − − + + + − − + +
ρ ρ ρ ρ ρ ρ ρρ ρ ρ−µ −ν + −µ −ν = −ν −µ + −ν −µ ≤ −ν −µ .
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Furthermore,

	
( ) ( )

'

' '

1
1

1 1

jj

j j j j

+ +
ρρ

+ − − +
ρ ρ ρ ρ

− ν −µ
≥

−µ −ν + −µ −ν
.

Thereby, '( ) 0j jp A A+
ρ ρ⊇ =  . Therefore, '( ) 0j jp A Aρ ρ⊇ =   in the case of '1 j j

− −
ρ ρ− ν ≤ µ . 

We prove that (P2.2) is valid.

Proof of (P2.3)

Because '1 0j j
− −
ρ ρ− ν −µ ≤ , we have:

	

( ) ( )
'

''

1
0

1 1
j j

j j jj

− −
ρ ρ

− + + −
ρ ρ ρρ

− ν −µ
≤

−µ −ν + −µ −ν
.

Thereby, '( ) 1j jp A A−
ρ ρ⊇ =  . Additionally, because ' 'j j

− +
ρ ρν ≤ ν , j j

− +
ρ ρµ ≤ µ , and '1 j

−
ρ− ν −  

0j
−
ρµ ≤ , we obtain ''1 1 0j j jj

+ + − −
ρ ρ ρρ− ν −µ ≤ −ν −µ ≤  and

	
( ) ( )

'

' '

1
0

1 1

jj

j j j j

+ +
ρρ

+ − − +
ρ ρ ρ ρ

− ν −µ
≤

−µ −ν + −µ −ν
.

Therefore, '( ) 1j jp A A+
ρ ρ⊇ =  . It follows that '( ) 1j jp A Aρ ρ⊇ =   if '1j j

− −
ρ ρµ ≥ −ν , i.e., 

(P2.3) is valid.

Proof of (P2.4)

According to Definition 4, we have:

	
( )' ' '

1( ) ( ) ( )
2j j j j j jp A A p A A p A A− +

ρ ρ ρ ρ ρ ρ⊇ = ⊇ + ⊇     

and

	
( )' ' ' '

1( ) ( ) ( ) ( )
2j j j j j j j jp A A p A A p A A p A A− +

ρ ρ ρ ρ ρ ρ ρ ρ⊆ = ⊇ = ⊇ + ⊇        .

Applying (P1.4) in Property 1, we obtain: ' '( ) ( ) 1j j j jp A A p A A− +
ρ ρ ρ ρ⊇ + ⊇ =     and 

' '( ) ( ) 1j j j jp A A p A A− +
ρ ρ ρ ρ⊇ + ⊇ =    . It is proven that:

        	

( ) ( )
( ) ( )

' '

' ' ' '

' ' ' '

( ) ( )
1 1( ) ( ) ( ) ( )
2 2
1 1( ) ( ) ( ) ( ) 1.
2 2

j j j j

j j j j j j j j

j j j j j j j j

p A A p A A

p A A p A A p A A p A A

p A A p A A p A A p A A

ρ ρ ρ ρ

− + − +
ρ ρ ρ ρ ρ ρ ρ ρ

− + − +
ρ ρ ρ ρ ρ ρ ρ ρ

⊇ + ⊆ =

⊇ + ⊇ + ⊇ + ⊇ =

⊇ + ⊇ + ⊇ + ⊇ =

   

       

       

Therefore, we prove that (P2.4) is valid.



Technological and Economic Development of Economy, 2016, 22(3): 357–392 389

Proof of (P2.5)

If ' '( ) ( )j j j jp A A p A Aρ ρ ρ ρ⊇ = ⊆    , it is easily observed that '( )j jp A Aρ ρ⊇ = 

'( ) 0.5j jp A Aρ ρ⊆ =   

0.5 according to (P2.4) as above. Thereby, (P2.5) is valid.

Proof of (P2.6)
Assume the contrary: "( ) 0.5j jp A Aρ ρ⊇ ≥   and  but not . Then,

	 '( ) 0.5j jp A Aρ ρ⊇ <  	 (A6)

holds.
When "1 0j j

+ +
ρ ρ−µ −ν < , we have "( ) 1j jp A A+

ρ ρ⊇ =  . According to (P1.1) in Prop-

erty 1, we know that "( ) 0j jp A A−
ρ ρ⊇ ≥  , and thus, "( ) 0.5j jp A Aρ ρ⊇ ≥  . In contrast, if 

"1 0j j
+ +
ρ ρ−µ −ν ≥ , the given assumption that "( ) 0.5j jp A Aρ ρ⊇ ≥   indicates that:

	
( )" "

1 1( ) ( )
2 2j j j jp A A p A A− +

ρ ρ ρ ρ⊇ + ⊇ ≥    .

Therefore,

	 " "( ) ( ) 1j j j jp A A p A A− +
ρ ρ ρ ρ⊇ + ⊇ ≥    .

Because " "( ) ( )j j j jp A A p A A− +
ρ ρ ρ ρ⊇ ≤ ⊇     using (P1.3) in Property 1, the necessary 

condition that "( ) 0.5j jp A Aρ ρ⊇ ≥   is as follows:

	
"

1( )
2j jp A A+

ρ ρ⊇ ≥  .

Recall that "1 0j j
+ +
ρ ρ−µ −ν ≥ ; thus,

	

( )
( ) ( )

"

" "

1 11
21 1

jj

j j j j

+ +
ρρ

+ − − +
ρ ρ ρ ρ

− ν −µ
− ≥

−µ −ν + −µ −ν
.

It follows that:

	
( ) ( )

"

" "

1 1
21 1

j j

j j j j

− −
ρ ρ

− − + +
ρ ρ ρ ρ

− ν −µ
≥

−ν −µ + −µ −ν
.

Therefore, we obtain:
	 ""0 1 1j j jj

+ + − −
ρ ρ ρρ≤ −µ −ν ≤ −ν −µ .	 (A7)

If ' "1 0j j
+ +
ρ ρ− ν −µ < , we have " '( ) 1j jp A A+

ρ ρ⊇ =  . Therefore, " '( ) 0.5j jp A Aρ ρ⊇ ≥   

because " '( ) 0j jp A A−
ρ ρ⊇ ≥  . In contrast, if ' "1 0j j

+ +
ρ ρ− ν −µ ≥ , the given assumption that 

" '( ) 0.5j jp A Aρ ρ⊇ ≥   indicates that:

	
( )" ' " '

1 1( ) ( )
2 2j j j jp A A p A A− +

ρ ρ ρ ρ⊇ + ⊇ ≥    ,

and

	
" '

1( )
2j jp A A+

ρ ρ⊇ ≥  .
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In a similar way, we can obtain:

	 " '" '0 1 1 j jj j
+ + − −

ρ ρρ ρ≤ −µ −ν ≤ −ν −µ .	 (A8)

Consider the given assumption that "( ) 0.5j jp A Aρ ρ⊇ ≥  . According to (P2.4) in Proper-

ty 2, we know that " "( ) ( ) 1j j j jp A A p A Aρ ρ ρ ρ⊇ + ⊆ =    . Because "( )j jp A Aρ ρ⊇ ≥  0.5, we obtain 

" "( ) ( ) 0.5j j j jp A A p A Aρ ρ ρ ρ⊆ = ⊇ ≤    . When "1 0j j
+ +
ρ ρ− ν −µ < , we have "( ) 1j jp A A+

ρ ρ⊇ =  , 

which conflicts with "( ) 0.5j jp A Aρ ρ⊇ ≤  . Therefore, it is reasonable that "1 0j j
+ +
ρ ρ− ν −µ ≥ . 

Accordingly, the sufficient condition that "( ) 0.5j jp A Aρ ρ⊇ ≤   is as follows:

	
"

1( )
2j jp A A+

ρ ρ⊇ ≤  .

It follows that:

	

( )
( ) ( )

"

""

1 11
21 1

j j

j j jj

+ +
ρ ρ

+ − − +
ρ ρ ρρ

− ν −µ
− ≤

−µ −ν + −µ −ν
.

Therefore, we obtain:

	
( ) ( )

"

" "

1 1
21 1

j j

j j jj

− −
ρ ρ

− − + +
ρ ρ ρρ

−µ −ν
≤

−µ −ν + −µ −ν
.

Because " "1 1 0j j j j
− − + +
ρ ρ ρ ρ−µ −ν ≥ −µ −ν ≥ , we have:

	 " "0 1 1j j jj
− − + +
ρ ρ ρρ≤ −µ −ν ≤ −µ −ν .	 (A9)

Consider the given assumption that " '( ) 0.5j jp A Aρ ρ⊇ ≥  . We obtain ' "( )j jp A Aρ ρ⊇   ≤ 0.5  be-

cause " ' ' "( ) ( ) 1j j j jp A A p A Aρ ρ ρ ρ⊇ + ⊇ =    . When " '1 0j j
+ +
ρ ρ− ν −µ < , we have ' "( ) 1j jp A A+

ρ ρ⊇ = 

 
, 

which conflicts with ' "( ) 0.5j jp A Aρ ρ⊇ ≤  . Therefore, the condition that " '1 0j j
+ +
ρ ρ− ν −µ ≥  is 

valid. The sufficient condition of ' "( ) 0.5j jp A Aρ ρ⊇ ≤   is as follows:

	
' "

1( )
2j jp A A+

ρ ρ⊇ ≤  .

In a similar way, we can obtain:

	 " ' ' "0 1 1j j j j
− − + +
ρ ρ ρ ρ≤ −µ −ν ≤ −µ −ν .	 (A10)

Summing the inequalities from (A7)–(A10), we obtain:

	

" " '" " '

" " ' " ' "

0 1 1 1 1

      1 1 1 1 .
j j j j jj j j

j j j j jj j j

+ + + + − − − −
ρ ρ ρ ρ ρρ ρ ρ
− − − − + + + +
ρ ρ ρ ρ ρρ ρ ρ

≤ −µ −ν + −µ −ν + −µ −ν + −µ −ν ≤

−ν −µ + −ν −µ + −µ −ν + −µ −ν

It follows that:

	 ' '' '1 1 1 1j j j j j jj j
+ + − − − − + +
ρ ρ ρ ρ ρ ρρ ρ−µ −ν + −µ −ν ≤ −ν −µ + −ν −µ .	 (A11)



Technological and Economic Development of Economy, 2016, 22(3): 357–392 391

Notice that:

			 
	

( )'' ' ' '1 1 1 1 2 1j j j j j jj j j j
+ + − − + + + + + +
ρ ρ ρ ρ ρ ρρ ρ ρ ρ−µ −ν + −µ −ν ≥ −µ −ν + −µ −ν = ⋅ −µ −ν ,

and

	 ( )' ' ' ''1 1 1 1 2 1j j j j j j j j jj
− − + + − − − − − −
ρ ρ ρ ρ ρ ρ ρ ρ ρρ− ν −µ + −ν −µ ≤ −ν −µ + −ν −µ = ⋅ − ν −µ .

Therefore, the inequality in (A11) leads to:

	
( ) ( )''2 1 2 1j j jj

+ + − −
ρ ρ ρρ⋅ −µ −ν ≤ ⋅ − ν −µ .

It is easily observed that:

	 ''1 1j j jj
+ + − −
ρ ρ ρρ−µ −ν ≤ −ν −µ .

If '1 0j j
+ +
ρ ρ−µ −ν ≥ , then we have:

	 ' ''(1 ) (1 ) 2 (1 )j j j j jj
− − + + − −
ρ ρ ρ ρ ρρ− ν −µ + −µ −ν ≤ ⋅ − ν −µ .

The inequality above can be rewritten as follows:

	
( ) ( )

'

' '

1 1
21 1

j j

j j j j

− −
ρ ρ

− − + +
ρ ρ ρ ρ

− ν −µ
≥

−ν −µ + −µ −ν
.

That is,

	

( )
( ) ( )

'

' '

1 11
21 1

jj

j j j j

+ +
ρρ

+ − − +
ρ ρ ρ ρ

− ν −µ
− ≥

−µ −ν + −µ −ν
,

which implies that:

	
'

1( )
2j jp A A+

ρ ρ⊇ ≥  .

If '1 0j j
+ +
ρ ρ−µ −ν < , then we have '( ) 1j jp A A+

ρ ρ⊇ =  . Therefore, the necessary condition 

that '( ) 0.5j jp A Aρ ρ⊇ ≥   is satisfied.
Conversely, if ''j j jj

+ + − −
ρ ρ ρρν +µ ≤ µ + ν , we have:

	 ' '1 1j j jj
− − + +
ρ ρ ρρ− ν −µ ≤ −µ −ν .

Then, it follows that:

	
( ) ( ) ( )' ' '2 1 1 1j j j j jj

− − − − + +
ρ ρ ρ ρ ρρ⋅ − ν −µ ≤ −ν −µ + −µ −ν .

The inequality above can be rewritten as follows:

	
( ) ( )

'

' '

1 1
21 1

j j

j j jj

− −
ρ ρ

− − + +
ρ ρ ρρ

− ν −µ
≤

−ν −µ + −µ −ν
.
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That is,

	

( )
( ) ( )

'

''

1 11
21 1

j j

j j jj

+ +
ρ ρ

+ − − +
ρ ρ ρρ

− ν −µ
− ≤

−µ −ν + −µ −ν
,

which implies that:

	
'

1( )
2j jp A A+

ρ ρ⊇ ≤  .

Therefore, the sufficient condition that '( ) 0.5j jp A Aρ ρ⊇ ≤   is satisfied. When 

''j j jj
+ + − −
ρ ρ ρρν +µ > µ + ν , the necessary condition that '( ) 0.5j jp A Aρ ρ⊇ ≥   is still satisfied. It 

is proven that '( ) 0.5j jp A Aρ ρ⊇ ≥  ; this is a contradiction of (A6). Therefore, (P2.6) is valid. 
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